Contents

Section 1. Safety and General Information.................................................................1
Section 2. Tools & Aids ..........................................................................................2
Section 3. Troubleshooting .....................................................................................3
Section 4. Air Cleaner and Air Intake System .........................................................4
Section 5. Fuel System and Governor ....................................................................5
Section 6. Lubrication System ................................................................................6
Section 7. Electrical System and Components .......................................................7
Section 8. Disassembly ...........................................................................................8
Section 9. Inspection and Reconditioning ...............................................................9
Section 10. Reassembly ..........................................................................................10
Section 11. Emission Compliance Systems ............................................................11
Section 1
Safety and General Information

Safety Precautions

To ensure safe operation please read the following statements and understand their meaning. Also refer to your equipment manufacturer’s manual for other important safety information. This manual contains safety precautions which are explained below. Please read carefully.

⚠️ **WARNING**
Warning is used to indicate the presence of a hazard that *can* cause severe personal injury, death, or substantial property damage if the warning is ignored.

⚠️ **CAUTION**
Caution is used to indicate the presence of a hazard that *will* or *can* cause minor personal injury or property damage if the caution is ignored.

**NOTE**
Note is used to notify people of installation, operation, or maintenance information that is important but not hazard-related.

**For Your Safety!**
*These precautions should be followed at all times. Failure to follow these precautions could result in injury to yourself and others.*

<table>
<thead>
<tr>
<th>⚠️ <strong>WARNING</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Accidental Starts</strong> can cause severe injury or death.</td>
</tr>
<tr>
<td>Disconnect and ground spark plug leads before servicing.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>⚠️ <strong>WARNING</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Rotating Parts</strong> can cause severe injury.</td>
</tr>
<tr>
<td>Stay away while engine is in operation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>⚠️ <strong>WARNING</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Hot Parts</strong> can cause severe burns.</td>
</tr>
<tr>
<td>Do not touch engine while operating or just after stopping.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>⚠️ <strong>WARNING</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Accidental Starts!</strong> Disabling engine. Accidental starting can cause severe injury or death. Before working on the engine or equipment, disable the engine as follows: 1) Disconnect the spark plug lead(s). 2) Disconnect negative (-) battery cable from battery.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>⚠️ <strong>WARNING</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Rotating Parts!</strong> Keep hands, feet, hair, and clothing away from all moving parts to prevent injury. Never operate the engine with covers, shrouds, or guards removed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>⚠️ <strong>WARNING</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Hot Parts!</strong> Engine components can get extremely hot from operation. To prevent severe burns, do not touch these areas while the engine is running, or immediately after it is turned off. Never operate the engine with heat shields or guards removed.</td>
</tr>
</tbody>
</table>
**Section 1**

**Safety and General Information**

---

**WARNING**

**Explosive Fuel**

Gasoline is extremely flammable and its vapors can explode if ignited. Store gasoline only in approved containers, in well ventilated, unoccupied buildings, away from sparks or flames. Do not fill the fuel tank while the engine is hot or running. Do not start the engine near spilled fuel. Never use gasoline as a cleaning agent.

---

**WARNING**

**Carbon Monoxide**

Carbon monoxide can cause severe nausea, fainting or death. Avoid inhaling exhaust fumes, and never run the engine in a closed building or confined area.

---

**WARNING**

**Explosive Gas**

Batteries produce explosive hydrogen gas while being charged. To prevent a fire or explosion, charge batteries only in well ventilated areas. Keep sparks, open flames, and other sources of ignition away from the battery at all times. Keep batteries out of the reach of children. Remove all jewelry when servicing batteries.

Before disconnecting the negative (-) ground cable, make sure all switches are OFF. If ON, a spark will occur at the ground cable terminal which could cause an explosion if hydrogen gas or gasoline vapors are present.

---

**CAUTION**

**Electrical Shock**

Do not touch wires while engine is running.

**Electrical Shock**

Never touch electrical wires or components while the engine is running. They can be sources of electrical shock.

---

**WARNING**

**Lethal Exhaust Gases**

Engine exhaust gases contain poisonous carbon monoxide. Carbon monoxide is odorless, colorless, and can cause death if inhaled. Avoid inhaling exhaust fumes, and never run the engine in a closed building or confined area.

---

**WARNING**

**Cleaning Solvents**

Cleaning solvents can cause severe injury or death. Use only in well ventilated areas away from ignition sources.

---

**CAUTION**

**Flammable Solvents**

Carburetor cleaners and solvents are extremely flammable. Keep sparks, flames, and other sources of ignition away from the area. Follow the cleaner manufacturer’s warnings and instructions on its proper and safe use. Never use gasoline as a cleaning agent.
### Engine Identification Numbers

When ordering parts, or in any communication involving an engine, always give the **Model, Specification, and Serial Numbers** of the engine.

The engine identification numbers appear on a decal affixed to the engine shrouding. See Figure 1-1. An explanation of these numbers is shown in Figure 1-2.

#### A. Model No.

**Courage Vertical Shaft Engine**

**Numerical Designation**

**SV 540 S**

**Version Code**

S = Electric Start

#### B. Spec. No.

**SV540-0001**

**Engine Model**

- SV470
- SV480
- SV530
- SV540
- SV590
- SV600
- SV610
- SV620

**First spec written in this model series**

#### C. Serial No.

**3205810334**

**Year Manufactured Code**

- 32: 2002
- 33: 2003
- 34: 2004
- 35: 2005
- 36: 2006
- 37: 2007
- 38: 2008

**Factory Code**

![Identification Decal](image)
Section 1
Safety and General Information

Oil Recommendations
Using the proper type and weight of oil in the crankcase is extremely important, as is checking oil daily and changing oil regularly. Failure to use the correct oil or using dirty oil causes premature engine wear and failure.

Oil Type
Use high-quality detergent oil of API (American Petroleum Institute) service class SJ or higher. Select the viscosity based on the air temperature at the time of operation as shown below.

Refer to Section 6 - Lubrication System for detailed oil check, oil change, and oil filter change procedures.

Fuel Recommendations

WARNING: Explosive Fuel!
Gasoline is extremely flammable and its vapors can explode if ignited. Store gasoline only in approved containers, in well ventilated, unoccupied buildings, away from sparks or flames. Do not fill the fuel tank while the engine is hot or running, since spilled fuel could ignite if it comes in contact with hot parts or sparks from ignition. Do not start the engine near spilled fuel. Never use gasoline as a cleaning agent.

General Recommendations
Purchase gasoline in small quantities and store in clean, approved containers. A container with a capacity of 2 gallons or less with a pouring spout is recommended. Such a container is easier to handle and helps eliminate spillage during refueling.

Do not use gasoline left over from the previous season, to minimize gum deposits in your fuel system and to ensure easy starting.

Do not add oil to the gasoline.

Do not overfill the fuel tank. Leave room for the fuel to expand.

Fuel Type
For best results use only clean, fresh, unleaded gasoline with a pump sticker octane rating of 87 (R+M)/2 or higher. In countries using the Research Octane Number (RON), it should be 90 octane minimum. Leaded gasoline is not recommended and must not be used on EFI engines or on other models where exhaust emissions are regulated.

Gasoline/Alcohol Blends
Gasohol (up to 10% ethyl alcohol, 90% unleaded gasoline by volume) is approved as a fuel for Kohler engines. Other gasoline/alcohol blends including E20 and E85 are not to be used and not approved. Any failures resulting from use of these fuels will not be warranted.

Gasoline/Ether Blends
Methyl Tertiary Butyl Ether (MTBE) and unleaded gasoline blends (up to a maximum of 15% MTBE by volume) are approved as a fuel for Kohler engines. Other gasoline/ether blends are not approved.
Periodic Maintenance

⚠️ WARNING: Accidental Starts!
Disabling engine. Accidental starting can cause severe injury or death. Before working on the engine or equipment, disable the engine as follows: 1) Disconnect the spark plug lead(s). 2) Disconnect negative (-) battery cable from battery.

Maintenance Schedule
Normal maintenance, replacement or repair of emission control devices and systems may be performed by any repair establishment or individual; however, warranty repairs must be performed by a Kohler authorized service center.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Maintenance Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily or Before Starting Engine</td>
<td>• Fill fuel tank.</td>
</tr>
<tr>
<td></td>
<td>• Check oil level.</td>
</tr>
<tr>
<td></td>
<td>• Check air cleaner for dirty¹, loose, or damaged parts.</td>
</tr>
<tr>
<td></td>
<td>• Check air intake and cooling areas, clean as necessary¹.</td>
</tr>
<tr>
<td>Annually or Every 25 Hours</td>
<td>• Service precleaner element¹ (if equipped).</td>
</tr>
<tr>
<td></td>
<td>• Service air cleaner element¹ (if not equipped with precleaner).</td>
</tr>
<tr>
<td>Annually or Every 100 Hours</td>
<td>• Replace air cleaner element¹ (if equipped with precleaner).</td>
</tr>
<tr>
<td></td>
<td>• Change oil and filter (more frequently under severe conditions).</td>
</tr>
<tr>
<td></td>
<td>• Remove cooling shroud and clean cooling areas.</td>
</tr>
<tr>
<td></td>
<td>• Check that all fasteners are in place and components are properly secured.</td>
</tr>
<tr>
<td></td>
<td>• Replace fuel filter.</td>
</tr>
<tr>
<td></td>
<td>• Check spark plug condition and gap.</td>
</tr>
<tr>
<td>Every 200 Hours</td>
<td>• Have valve lash checked/adjusted².</td>
</tr>
<tr>
<td>Every 500 Hours</td>
<td>• Have bendix starter drive serviced².</td>
</tr>
<tr>
<td></td>
<td>• Replace spark plug.</td>
</tr>
</tbody>
</table>

¹Perform these maintenance procedures more frequently under extremely dusty, dirty conditions.
²Have a Kohler Engine Service Dealer perform this service.

Storage
If the engine will be out of service for two months or more, use the following storage procedure:

1. Clean the exterior surfaces of the engine.

2. Change the oil and oil filter while the engine is still warm from operation. See Change Oil and Oil Filter in Section 6.

3. The fuel system must be completely emptied, or the gasoline must be treated with a stabilizer to prevent deterioration. If you choose to use a stabilizer, follow the manufacturer’s recommendations, and add the correct amount for the capacity of the fuel system. Fill the fuel tank with clean, fresh gasoline. Run the engine for 2-3 minutes to get stabilized fuel into the carburetor.

To empty the system, run the engine until the tank and system are empty.

4. Due to the deep recess around the spark plug, blow out the cavity with compressed air. Remove the spark plug. The spark plug is most accessible when the blower housing is removed for cleaning.

Add one tablespoon of engine oil into the spark plug hole. Install the plug, but do not connect the plug lead. Crank the engine two or three revolutions. Connect the plug lead.

5. Reinstall the blower housing, if removed previously, and torque the blower housing screws to 7.5 N·m (65 in. lb.).

6. Store the engine in a clean, dry place.
Section 1
Safety and General Information

Figure 1-4. Typical Engine Dimensions.
### General Specifications¹

**Power (@ 3600 RPM, exceeds Society of Automotive Engineers-Small Engine Test Code J1940)**

<table>
<thead>
<tr>
<th>Model</th>
<th>Power (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SV470</td>
<td>11.2 kW (15 HP)</td>
</tr>
<tr>
<td>SV480</td>
<td>11.9 kW (16 HP)</td>
</tr>
<tr>
<td>SV530</td>
<td>12.7 kW (17 HP)</td>
</tr>
<tr>
<td>SV540</td>
<td>13.4 kW (18 HP)</td>
</tr>
<tr>
<td>SV590</td>
<td>14.1 kW (19 HP)</td>
</tr>
<tr>
<td>SV600</td>
<td>14.9 kW (20 HP)</td>
</tr>
<tr>
<td>SV610</td>
<td>15.7 kW (21 HP)</td>
</tr>
<tr>
<td>SV620</td>
<td>16.4 kW (22 HP)</td>
</tr>
</tbody>
</table>

**Bore**

<table>
<thead>
<tr>
<th>Early Models</th>
<th>Bore (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SV470, SV480</td>
<td>84 mm (3.30 in.)</td>
</tr>
<tr>
<td>SV470, SV480, SV530, SV540</td>
<td>89 mm (3.50 in.)</td>
</tr>
<tr>
<td>SV590, SV600, SV610, SV620</td>
<td>94 mm (3.70 in.)</td>
</tr>
</tbody>
</table>

**Stroke**

- 86 mm (3.38 in.)

**Displacement**

<table>
<thead>
<tr>
<th>Early Models</th>
<th>Displacement (cc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SV470, SV480</td>
<td>477 cc (29.1 cu. in.)</td>
</tr>
<tr>
<td>SV470, SV480, SV530, SV540</td>
<td>535 cc (32.6 cu. in.)</td>
</tr>
<tr>
<td>SV590, SV600, SV610, SV620</td>
<td>597 cc (36.4 cu. in.)</td>
</tr>
</tbody>
</table>

**Compression Ratio**

<table>
<thead>
<tr>
<th>Early Models</th>
<th>Compression Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>SV470, SV480, SV530, SV540</td>
<td>9.4:1</td>
</tr>
<tr>
<td>SV590, SV600, SV610, SV620</td>
<td>8.5:1</td>
</tr>
</tbody>
</table>

**Dry Weight**

- 35.8 kg (79 lb.)

**Oil Capacity (with filter)**

- 1.04-1.30 L (1.1-1.4 qt.)

**Angle of Operation - Maximum (at Full Oil Level) All Directions**

- 25° Intermittent

### Air Cleaner Base

| Hex Nut Fastener Torque | 5.5 N·m (48 in. lb.) |
| Mounting Screw Fastener Torque (Install Dry - DO NOT OIL) | 8.0 N·m (70 in. lb.) |

**Blower Housing and Sheet Metal**

| M6 Fasteners Torque | 11.6 N·m (99 in. lb.) |

**Cam Lever**

| Cam Lever Fastener Torque | 8.0-10.5 N·m (70-94.0 in. lb.) |

**Cam Gears**

| End Play | 0.5/1.5 mm (0.019/0.059 in.) |
| Running Side Clearance | 0.02/0.13 mm (0.001/0.005 in.) |
| Cam Gear-to-Cam Shaft Running Assembly | 0.02/0.10 mm (0.001/0.004 in.) |

### Carburetor

| Fuel Bowl Retaining Screw Torque | 5.1-6.2 N·m (45-55 in. lb.) |

¹Values are in metric units. Values in parentheses are English equivalents. Lubricate threads with engine oil prior to assembly, EXCEPT for air cleaner base thread forming screw - install dry.
# Section 1
## Safety and General Information

### Closure Plate
- Closure Plate Fastener Torque: 24.5 N·m (216 in. lb.)

### Balance Weight Guide Channel Width
- New: 17.95/18.05 mm (0.707/0.711 in.)
- Max. Wear Limit: 18.13 mm (0.714 in.)

### Connecting Rod
- Cap Fastener Torque (torque in 2 increments): 5.5, 11.5 N·m (50, 100 in. lb.)

#### Connecting Rod-to-Crankpin Running Clearance
- New: 0.03/0.055 mm (0.0012/0.0022 in.)
- Max. Wear Limit: 0.07 mm (0.0025 in.)

#### Connecting Rod-to-Crankpin Side Clearance: 0.25/0.59 mm (0.0098/0.0232 in.)

#### Connecting Rod-to-Piston Pin Running Clearance: 0.015/0.028 mm (0.0006/0.0011 in.)

### Piston Pin End I.D.
- New: 22.015/22.023 mm (0.8667/0.8670 in.)
- Max. Wear Limit: 22.036 mm (0.8675 in.)

### Crankcase
- Governor Cross Shaft Bore I.D.
  - New: 6.025/6.05 mm (0.2372/0.2382 in.)
  - Max. Wear Limit: 6.063 mm (0.2387 in.)
- Oil Drain Plug Torque: 14.0 N·m (125 in. lb.)

### Crankshaft
- End Play (free): 0.225/1.025 mm (0.0089/0.040 in.)

#### Crankshaft Bore in Crankcase I.D.
- New: 41.965/41.990 mm (1.6521/1.6531 in.)
- Max. Wear Limit: 42.016 mm (1.654 in.)

#### Crankshaft Bore in Closure Plate I.D.
- New: 44.965/44.990 mm (1.7703/1.7713 in.)
- Max. Wear Limit: 45.016 mm (1.7723 in.)

### Flywheel End Main Bearing Journal O.D.
- New - Before Serial No. 3703200003: 44.913/44.935 mm (1.7682/1.7691 in.)
- New - After Serial No. 3703200013: 44.870/44.895 mm (1.7665/1.7675 in.)
- O.D. - Max. Wear Limit: 44.84 mm (1.765 in.)
- Max. Taper: 0.0220 mm (0.0009 in.)
- Max. Out of Round: 0.025 mm (0.001 in.)

### PTO End Main Bearing Journal O.D.
- New - Before Serial No. 3703200003: 41.913/41.935 mm (1.6501/1.6510 in.)
- New - After Serial No. 3703200013: 41.855/41.880 mm (1.6478/1.6488 in.)
- O.D. - Max. Wear Limit: 41.83 mm (1.647 in.)
- Max. Taper: 0.020 mm (0.0008 in.)
- Max. Out of Round: 0.025 mm (0.001 in.)
Section 1
Safety and General Information

Crankshaft (Continued)
Crankshaft Bore in Closure Plate Running Clearance
- New - Before Serial No. 3703200003: 0.030/0.077 mm (0.0012/0.0030 in.)
- New - After Serial No. 3703200013: 0.070/0.120 mm (0.0027/0.0047 in.)

Crankshaft Bore in Crankcase Running Clearance
- New - Before Serial No. 3703200003: 0.030/0.077 mm (0.0012/0.0030 in.)
- New - After Serial No. 3703200013: 0.085/0.135 mm (0.0033/0.0053 in.)

Connecting Rod Journal O.D.
- New: 40.982/41.000 mm (1.6134/1.6141 in.)
- Max. Wear Limit: 40.964 mm (1.612 in.)
- Max. Taper: 0.012 mm (0.0005 in.)
- Max. Out of Round: 0.025 mm (0.001 in.)

Crankshaft T.I.R.
- PTO End, Crankshaft in Engine: 0.15 mm (0.0059 in.)
- Entire Crankshaft, in V-Blocks: 0.10 mm (0.0039 in.)

Crankshaft Eccentrics O.D.
- New: 66.940/66.970 mm (2.6354/2.6366 in.)
- Max. Wear Limit: 66.890 mm (2.6330 in.)

Balance Weight
Balance Weight Bearing Surface I.D.
- New: 67.011/67.086 mm (2.6382/2.6412 in.)
- Max. Wear Limit: 67.140 mm (2.6430 in.)

Balance Weight Pin O.D.
- New: 11.950/11.975 mm (0.4705/0.4715 in.)
- Max. Wear Limit: 11.900 mm (0.4685 in.)

Guide Shoe Width - Before Serial No. 3618000003
- New: 17.85/17.90 mm (0.703/0.705 in.)
- Max. Wear Limit: 17.75 mm (0.6988 in.)

Guide Shoe Hole I.D.
- New: 12.000/12.025 mm (0.4724/0.4734 in.)
- Max. Wear Limit: 12.050 mm (0.4744 in.)

Linkage Pin O.D. (Crankcase) - After Serial No. 3618000013
- New: 11.964/11.975 mm (0.4710/0.4715 in.)
- Max. Wear Limit: 11.900 mm (0.4685 in.)

Balance Weight Linkage - After Serial No. 3618000013
- New: 11.985/12.010 mm (0.4719/0.4728 in.)
- Max. Wear Limit: 12.035 mm (0.4738 in.)

Balance Weight Screw Torque
- 10.9-13.2 N·m (95.0-115.0 in. lb.)
Section 1
Safety and General Information

Cylinder Bore
Cylinder Bore I.D.

New
SV470, SV480-00XX ................................................................. 84.000/84.025 mm (3.307/3.308 in.)
SV470, SV480-01XX ................................................................. 89.000/89.025 mm (3.504/3.505 in.)
SV530, SV540 ............................................................................. 89.000/89.025 mm (3.504/3.505 in.)
SV590, SV600, SV610, SV620 .................................................. 94.010/94.035 mm (3.701/3.702 in.)

Max. Wear Limit
SV470, SV480-00XX ................................................................. 84.073 mm (3.310 in.)
SV470, SV480-01XX ................................................................. 84.073 mm (3.310 in.)
SV530, SV540 ............................................................................. 89.073 mm (3.507 in.)
SV590, SV600, SV610, SV620 .................................................. 94.073 mm (3.704 in.)

Max. Taper ...................................................................................... 0.05 mm (0.002 in.)

Max. Out of Round ........................................................................ 0.12 mm (0.0047 in.)

Cylinder Head
Cylinder Head Fastener Torque (torque in 2 increments) ................ 20.5, 41.0 N·m (180, 360 in. lb.)

Max. Out-of-Flatness .................................................................... 0.8 mm (0.003 in.)

Rocker Arm Pivot Stud Torque ..................................................... 13.5 N·m (120 in. lb.)

Rocker Arm Adjustment Nut Set Screw ......................................... 5.5 N·m (50 in. lb.)

Electric Starter
Thru Bolt Torque ........................................................................... 3.3-3.9 N·m (30-35 in. lb.)
Mounting Nut Torque ................................................................... 3.6 N·m (32 in. lb.)
Nut (Top) Positive (+) Brush Lead Terminal ................................. 1.6-2.8 N·m (15-25 in. lb.)
Nut (Flange) Positive (+) Brush Lead Terminal ............................. 2.2-4.5 N·m (20-40 in. lb.)

Fan/Flywheel
Flywheel Retaining Screw Torque M12 ........................................ 88.0 N·m (65 ft. lb.)
Flywheel Retaining Screw Torque M10 ........................................ 66.5 N·m (49 ft. lb.)

Governor
Governor Cross Shaft-to-Crankcase Running Clearance ............. 0.013/0.075 mm (0.0005/0.003 in.)

Governor Cross Shaft O.D.

New ............................................................................................. 5.975/6.012 mm (0.2352/0.2367 in.)
Max. Wear Limit .......................................................................... 5.962 mm (0.2347 in.)

Governor Gear Shaft-to-Governor Gear Running Clearance .......... 0.09/0.16 mm (0.0035/0.0063 in.)

Governor Gear Shaft O.D.

New ............................................................................................. 5.99/6.00 mm (0.2358/0.2362 in.)
Max. Wear Limit .......................................................................... 5.977 mm (0.2353 in.)

Ignition
Spark Plug Type (Champion® or Equivalent) ............................... RC12YC or QC12YC
Spark Plug Gap ............................................................................. 0.76 mm (0.030 in.)
## Ignition (Continued)

<table>
<thead>
<tr>
<th>Item</th>
<th>Torque/Torque Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spark Plug Torque</td>
<td>24-30 N·m (18-22 ft. lb.)</td>
</tr>
<tr>
<td>Ignition Module Air Gap</td>
<td>0.203/0.305 mm (0.008/0.012 in.)</td>
</tr>
<tr>
<td>Ignition Module Fastener Torque</td>
<td>6.0 N·m (55 in. lb.)</td>
</tr>
<tr>
<td></td>
<td>Into new as-cast hole</td>
</tr>
<tr>
<td></td>
<td>4.0 N·m (35 in. lb.)</td>
</tr>
<tr>
<td></td>
<td>Into used hole</td>
</tr>
<tr>
<td>Muffler Retaining Nuts Torque</td>
<td>24.4 N·m (216 in. lb.)</td>
</tr>
<tr>
<td>Oil Filterographer Pad Pipe Plug</td>
<td>4.5-5.0 N·m (40-46 in. lb.)</td>
</tr>
<tr>
<td>Oil Pump Mounting Screw Torque</td>
<td>5.0-7.5 N·m (44.4-66.0 in. lb.)</td>
</tr>
<tr>
<td></td>
<td>Into new as-cast hole</td>
</tr>
<tr>
<td></td>
<td>3.8-4.6 N·m (33.3-40.3 in. lb.)</td>
</tr>
<tr>
<td></td>
<td>Into used hole</td>
</tr>
<tr>
<td>Oil Sentry Pressure Switch Torque</td>
<td>4.5-5.0 N·m (40-45 in. lb.)</td>
</tr>
<tr>
<td>Piston Pin Bore I.D.</td>
<td>New: 22.006/22.012 mm (0.8685/0.8666 in.)</td>
</tr>
<tr>
<td></td>
<td>Max. Wear Limit: 22.025 mm (0.8671 in.)</td>
</tr>
<tr>
<td>Piston Pin O.D.</td>
<td>New: 21.995/22.0 mm (0.8659/0.8661 in.)</td>
</tr>
<tr>
<td></td>
<td>Max. Wear Limit: 21.994 mm (0.8658 in.)</td>
</tr>
<tr>
<td>Top Compression Ring-to-Groove Side Clearance</td>
<td>0.04 mm (0.0016 in.)</td>
</tr>
<tr>
<td>Middle Compression Ring-to-Groove Side Clearance</td>
<td>0.04 mm (0.0016 in.)</td>
</tr>
<tr>
<td>Top and Middle Compression Ring End Gap</td>
<td>New Bore: 0.15/0.40 mm (0.006/0.016 in.)</td>
</tr>
<tr>
<td></td>
<td>Top Ring: 0.30/0.55 mm (0.012/0.022 in.)</td>
</tr>
<tr>
<td></td>
<td>Middle Ring: 0.77 mm (0.030 in.)</td>
</tr>
<tr>
<td>Piston Thrust Face O.D.²</td>
<td>SV470, SV480-00XX: 83.948/83.962 mm (3.3050/3.3056 in.)</td>
</tr>
<tr>
<td></td>
<td>Max. Wear Limit: 83.828 mm (3.3003 in.)</td>
</tr>
<tr>
<td></td>
<td>SV470, SV480-01XX: 88.948/88.962 mm (3.5018/3.5024 in.)</td>
</tr>
<tr>
<td></td>
<td>Max. Wear Limit: 88.828 mm (3.4972 in.)</td>
</tr>
</tbody>
</table>

²Measure 8 mm (0.314 in.) above the bottom of the piston skirt at right angles to the piston pin.
### Section 1
#### Safety and General Information

**Piston, Piston Rings, and Piston Pin (Continued)**

<table>
<thead>
<tr>
<th>Model</th>
<th>New</th>
<th>Max. Wear Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SV530, SV540</td>
<td>88.948/88.962 mm (3.5018/3.5024 in.)</td>
<td>88.828 mm (3.4972 in.)</td>
</tr>
<tr>
<td>SV590, SV600, SV610, SV620</td>
<td>93.928/93.942 mm (3.6980/3.6985 in.)</td>
<td>93.828 mm (3.6940 in.)</td>
</tr>
</tbody>
</table>

**Piston Thrust Face-to-Cylinder Bore**

<table>
<thead>
<tr>
<th>Model</th>
<th>New</th>
<th>Max. Wear Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SV470, SV480, SV530, SV540</td>
<td>0.045 mm (0.0018 in.)</td>
<td></td>
</tr>
<tr>
<td>SV560, SV590, SV600, SV610, SV620</td>
<td>0.0880 mm (0.0035 in.)</td>
<td></td>
</tr>
</tbody>
</table>

**Rectifier-Regulator Mounting Screw Torque**

- New: 6.0 N·m (55 in. lb.) Into new as cast hole
- Max. Wear Limit: 4.0 N·m (35 in. lb.) Into used hole

**Speed Control**

- Speed Control Bracket Assembly Fastener Torque: 11.0 N·m (95 in. lb.) Into new as-cast hole
- 7.5 N·m (65 in. lb.) Into used hole

**Stator**

- Stator Mounting Screw Torque: 6.0 N·m (55 in. lb.) Into new as-cast hole
- 4.0 N·m (35 in. lb.) Into used hole

**Throttle/Choke Controls Governor Control Lever Fastener Torque**

- 7.0-8.5 N·m (60-75 in. lb.)

**Valve Cover**

- Valve Cover Fastener Torque: 11.0 N·m (95 in. lb.) Into new as-cast hole
- 7.5 N·m (65 in. lb.) Into used hole

**Valves and Valve Lifters**

- Intake Valve Lash: 0.127 mm (0.005 in.)
- Exhaust Valve Lash: 0.178 mm (0.007 in.)
- Intake Valve Minimum Lift: 8.9 mm (0.350 in.)
- Exhaust Valve Minimum Lift: 8.9 mm (0.350 in.)

- Nominal Valve Seat Angle: 45°

- Intake Valve Stem-to-Valve Guide Running Clearance: 0.038/0.076 mm (0.0015/0.003 in.)

- Exhaust Valve Stem-to-Valve Guide Running Clearance: 0.050/0.88 mm (0.0020/0.0035 in.)

- Intake Valve Guide I.D.:
  - New: 6.038/6.058 mm (0.2377/0.2385 in.)
  - Max. Wear Limit: 6.135 mm (0.2415 in.)

---

2Measure 8 mm (0.314 in.) above the bottom of the piston skirt at right angles to the piston pin.

3Check valve lash every 200 hours, adjust as required.
Valves and Valve Lifters (Continued)
Intake Valve Stem Diameter
New.............................................................................................................. 5.982/6.0 mm (0.2355/0.2362 in.)

Exhaust Valve Guide I.D.
New.............................................................................................................. 6.038/6.058 mm (0.2377/0.2385 in.)
Max. Wear Limit.............................................................................................. 6.160 mm (0.2425 in.)

Exhaust Valve Stem Diameter
New.............................................................................................................. 5.970/5.988 mm (0.235/0.2357 in.)

General Torque Values
Metric Fastener Torque Recommendations for Standard Applications

<table>
<thead>
<tr>
<th>Size</th>
<th>4.8</th>
<th>5.8</th>
<th>8.8</th>
<th>10.9</th>
<th>12.9</th>
<th>Noncritical Fasteners Into Aluminum</th>
</tr>
</thead>
<tbody>
<tr>
<td>M4</td>
<td>1.2 (11)</td>
<td>1.7 (15)</td>
<td>2.9 (26)</td>
<td>4.1 (36)</td>
<td>5.0 (44)</td>
<td>2.0 (18)</td>
</tr>
<tr>
<td>M5</td>
<td>2.5 (22)</td>
<td>3.2 (28)</td>
<td>5.8 (51)</td>
<td>8.1 (72)</td>
<td>9.7 (86)</td>
<td>4.0 (35)</td>
</tr>
<tr>
<td>M6</td>
<td>4.3 (38)</td>
<td>5.7 (50)</td>
<td>9.9 (88)</td>
<td>14.0 (124)</td>
<td>16.5 (146)</td>
<td>6.8 (60)</td>
</tr>
<tr>
<td>M8</td>
<td>10.5 (93)</td>
<td>13.6 (120)</td>
<td>24.4 (216)</td>
<td>33.9 (300)</td>
<td>40.7 (360)</td>
<td>17.0 (150)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size</th>
<th>4.8</th>
<th>5.8</th>
<th>8.8</th>
<th>10.9</th>
<th>12.9</th>
<th>Noncritical Fasteners Into Aluminum</th>
</tr>
</thead>
<tbody>
<tr>
<td>M10</td>
<td>21.7 (16)</td>
<td>27.1 (20)</td>
<td>47.5 (35)</td>
<td>66.4 (49)</td>
<td>81.4 (60)</td>
<td>33.9 (25)</td>
</tr>
<tr>
<td>M12</td>
<td>36.6 (27)</td>
<td>47.5 (35)</td>
<td>82.7 (61)</td>
<td>116.6 (86)</td>
<td>139.7 (103)</td>
<td>61.0 (45)</td>
</tr>
<tr>
<td>M14</td>
<td>58.3 (43)</td>
<td>76.4 (55)</td>
<td>131.5 (97)</td>
<td>184.4 (136)</td>
<td>219.7 (162)</td>
<td>94.9 (70)</td>
</tr>
</tbody>
</table>

Oil Drain Plugs Tightening Torque: N•m (English)

<table>
<thead>
<tr>
<th>Size</th>
<th>Into Cast Iron</th>
<th>Into Aluminum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8&quot; NPT</td>
<td>–</td>
<td>4.5 (40 in. lb.)</td>
</tr>
<tr>
<td>1/4&quot;</td>
<td>17.0 (150 in. lb.)</td>
<td>11.3 (100 in. lb.)</td>
</tr>
<tr>
<td>3/8&quot;</td>
<td>20.3 (180 in. lb.)</td>
<td>13.6 (120 in. lb.)</td>
</tr>
<tr>
<td>1/2&quot;</td>
<td>27.1 (20 ft. lb.)</td>
<td>17.6 (13 ft. lb.)</td>
</tr>
<tr>
<td>3/4&quot;</td>
<td>33.9 (25 ft. lb.)</td>
<td>21.7 (16 ft. lb.)</td>
</tr>
<tr>
<td>X-708-1</td>
<td>27.1/33.9 (20/25 ft. lb.)</td>
<td>27.1/33.9 (20/25 ft. lb.)</td>
</tr>
</tbody>
</table>

Torque Conversions

N•m = in. lb. x 0.113
N•m = ft. lb. x 1.356
in. lb. = N•m x 8.85
ft. lb. = N•m x 0.737
Section 2
Tools & Aids

Certain quality tools are designed to help you perform specific disassembly, repair, and reassembly procedures. By using tools designed for the job, you can properly service engines easier, faster, and safer! In addition, you’ll increase your service capabilities and customer satisfaction by decreasing engine downtime.

Here is the list of tools and their source.

Separate Tool Suppliers:
Kohler Tools
Contact your source of supply.

SE Tools
415 Howard St.
Lapeer, MI 48446
Phone 810-664-2981
Toll Free 800-664-2981
Fax 810-664-8181

Design Technology Inc.
768 Burr Oak Drive
Westmont, IL 60559
Phone 630-920-1300

<table>
<thead>
<tr>
<th>Tools</th>
<th>Description</th>
<th>Source/Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balance Gear Timing Tool (K &amp; M Series)</td>
<td>To hold balance gears in timed position when assembling engine.</td>
<td>Kohler 25 455 06-S (Formerly Y-357)</td>
</tr>
<tr>
<td>Camshaft Endplay Plate</td>
<td>For checking camshaft endplay.</td>
<td>SE Tools KLR-82405</td>
</tr>
<tr>
<td>Camshaft Seal Protector (Aegis)</td>
<td>To protect seal during camshaft installation.</td>
<td>SE Tools KLR-82417</td>
</tr>
<tr>
<td>Cylinder Leakdown Tester</td>
<td>For checking combustion retention and if cylinder, piston, rings, or valves are worn.</td>
<td>Kohler 25 761 05-S</td>
</tr>
<tr>
<td>Electronic Fuel Injection (EFI) Diagnostic Software</td>
<td>Use with Laptop or Desktop PC.</td>
<td>Kohler 25 761 23-S</td>
</tr>
<tr>
<td>EFI Service Kit</td>
<td>For troubleshooting and setting up an EFI engine.</td>
<td>Kohler 24 761 01-S</td>
</tr>
<tr>
<td>Individual Components Available</td>
<td></td>
<td>Design Technology Inc.</td>
</tr>
<tr>
<td>Pressure Tester</td>
<td></td>
<td>DTI-019</td>
</tr>
<tr>
<td>Noid Light</td>
<td></td>
<td>DTI-021</td>
</tr>
<tr>
<td>90° Adapter</td>
<td></td>
<td>DTI-023</td>
</tr>
<tr>
<td>Oetiker Clamp Pliers</td>
<td></td>
<td>DTI-025</td>
</tr>
<tr>
<td>Code Plug, Red Wire</td>
<td></td>
<td>DTI-027</td>
</tr>
<tr>
<td>Code Plug, Blue Wire</td>
<td></td>
<td>DTI-029</td>
</tr>
<tr>
<td>Flywheel Holding Tool (CS Series)</td>
<td></td>
<td>SE Tools KLR-82407</td>
</tr>
<tr>
<td>Flywheel Puller</td>
<td>To remove flywheel from engine.</td>
<td>SE Tools KLR-82408</td>
</tr>
<tr>
<td>Flywheel Strap Wrench</td>
<td>To hold flywheel during removal.</td>
<td>SE Tools KLR-82409</td>
</tr>
</tbody>
</table>
## Section 2

### Tools & Aids

<table>
<thead>
<tr>
<th>Tools (Continued)</th>
<th>Description</th>
<th>Source/Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Hydraulic Valve Lifter Tool</strong></td>
<td>To remove and install hydraulic lifters.</td>
<td>Kohler 25 761 38-S</td>
</tr>
<tr>
<td><strong>Ignition System Tester</strong></td>
<td>For testing output on all systems, except CD.</td>
<td>Kohler 25 455 01-S</td>
</tr>
<tr>
<td></td>
<td>For testing output on capacitive discharge (CD) ignition system.</td>
<td>Kohler 24 455 02-S</td>
</tr>
<tr>
<td><strong>Offset Wrench (K &amp; M Series)</strong></td>
<td>To remove and reinstall cylinder barrel retaining nuts.</td>
<td>SE Tools KLR-82410</td>
</tr>
<tr>
<td><strong>Oil Pressure Test Kit</strong></td>
<td>To test and verify oil pressure.</td>
<td>Kohler 25 761 06-S</td>
</tr>
<tr>
<td><strong>Rectifier-Regulator Tester (120 volt current)</strong></td>
<td>Used to test rectifier-regulators.</td>
<td>Kohler 25 761 20-S</td>
</tr>
<tr>
<td><strong>Rectifier-Regulator Tester (240 volt current)</strong></td>
<td></td>
<td>Kohler 25 761 41-S</td>
</tr>
<tr>
<td><strong>Individual Components Available</strong></td>
<td>CS-PRO Regulator Test Harness</td>
<td>Design Technology Inc.</td>
</tr>
<tr>
<td></td>
<td>Special Regulator Test Harness with Diode</td>
<td>DTI-031</td>
</tr>
<tr>
<td></td>
<td><strong>Spark Advance Module (SAM) Tester</strong></td>
<td>Kohler 25 761 40-S</td>
</tr>
<tr>
<td></td>
<td>To test the SAM (ASAM and DSAM) on engines with SMART-SPARK™.</td>
<td></td>
</tr>
<tr>
<td><strong>Starter Retaining Ring Tool (Inertia Drive)</strong></td>
<td>To remove and reinstall drive retaining rings (excluding FASCO starters).</td>
<td>Kohler 25 761 18-S</td>
</tr>
<tr>
<td><strong>Starter Servicing Kit (All Starters)</strong></td>
<td>To remove and reinstall drive retaining rings and brushes.</td>
<td>SE Tools KLR-82411</td>
</tr>
<tr>
<td><strong>Individual Component Available</strong></td>
<td>Starter Brush Holding Tool (Solenoid Shift)</td>
<td>SE Tools KLR-82416</td>
</tr>
<tr>
<td><strong>Tachometer (Digital Inductive)</strong></td>
<td>For checking operating speed (RPM) of an engine.</td>
<td>Design Technology Inc.</td>
</tr>
<tr>
<td><strong>Vacuum/Pressure Tester</strong></td>
<td>Alternative to a water manometer.</td>
<td>Kohler 25 761 22-S</td>
</tr>
<tr>
<td><strong>Valve Guide Reamer (K &amp; M Series)</strong></td>
<td>For sizing valve guides after installation.</td>
<td>SE Tools KLR-11843</td>
</tr>
</tbody>
</table>
## Aids

<table>
<thead>
<tr>
<th>Description</th>
<th>Source/Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camshaft Lubricant (Valspar ZZ613)</td>
<td>Kohler 25 357 14-S</td>
</tr>
<tr>
<td>Dielectric Grease (GE/Novaguard G661)</td>
<td>Kohler 25 357 11-S</td>
</tr>
<tr>
<td>Dielectric Grease (Fel-Pro)</td>
<td>Lubri-Sel</td>
</tr>
<tr>
<td>Electric Starter Drive Lubricant (Inertia Drive)</td>
<td>Kohler 52 357 01-S</td>
</tr>
<tr>
<td>Electric Starter Drive Lubricant (Solenoid Shift)</td>
<td>Kohler 52 357 02-S</td>
</tr>
<tr>
<td>RTV Silicone Sealant</td>
<td>Kohler 25 357 12-S</td>
</tr>
<tr>
<td>Loctite® 5900 Heavy Body in 4 oz aerosol dispenser. Only oxime-based, oil resistant RTV sealants, such as those listed, are approved for use. Loctite® Nos. 5900 or 5910 are recommended for best sealing characteristics. Loctite® 5910 Loctite® Ultra Black 598 Loctite® Ultra Blue 587 Loctite® Ultra Copper</td>
<td></td>
</tr>
<tr>
<td>Spline Drive Lubricant</td>
<td>Kohler 25 357 07-S</td>
</tr>
</tbody>
</table>
Special Tools You Can Make

Flywheel Holding Tool
A flywheel holding tool can be made out of an old junk flywheel ring gear as shown in Figure 2-1, and used in place of a strap wrench.

1. Using an abrasive cut-off wheel, cut out a six tooth segment of the ring gear as shown.

2. Grind off any burrs or sharp edges.

3. Invert the segment and place it between the ignition bosses on the crankcase so that the tool teeth engage the flywheel ring gear teeth. The bosses will lock the tool and flywheel in position for loosening, tightening or removing with a puller.

Rocker Arm/Crankshaft Tool
A spanner wrench to lift the rocker arms or turn the crankshaft may be made out of an old junk connecting rod.

1. Find a used connecting rod from a 10 HP or larger engine. Remove and discard the rod cap.

2. Remove the studs of a Posi-Lock rod or grind off the aligning steps of a Command rod, so the joint surface is flat.

3. Find a 1 in. long capscrew with the correct thread size to match the threads in the connecting rod.

4. Use a flat washer with the correct I.D. to slip on the capscrew and approximately 1” O.D. (Kohler Part No. 12 468 05-S). Assemble the capscrew and washer to the joint surface of the rod, as shown in Figure 2-2.

Figure 2-1. Flywheel Holding Tool.

Figure 2-2. Rocker Arm/Crankshaft Tool.
Section 3
Troubleshooting

Troubleshooting Guide
When troubles occur, be sure to check the simple causes which, at first, may seem too obvious to be considered. For example, a starting problem could be caused by an empty fuel tank.

Some common types of engine troubles are listed below. Use these to help locate the possible cause(s).

**Engine Cranks But Will Not Start**
1. Empty fuel tank.
2. Fuel shut-off valve closed.
3. Poor fuel, dirt or water in the fuel system.
4. Clogged fuel line.
5. Spark plug lead disconnected.
6. Kill switch in off position.
7. Faulty spark plug.
8. Faulty ignition module.
10. Choke not closing.
11. Battery connected backwards.
12. Safety interlock system engaged.

**Engine Starts But Does Not Keep Running**
1. Restricted fuel tank cap vent.
2. Poor fuel, dirt or water in the fuel system.
3. Faulty or misadjusted choke or throttle controls.
4. Loose wires or connections that short the kill terminal of ignition module to ground.
5. Faulty cylinder head gasket.
6. Faulty carburetor.
7. Intake system leak.

**Engine Starts Hard**
1. PTO drive is engaged.
2. Poor fuel, dirt or water in the fuel system.
3. Clogged fuel line.
4. Loose or faulty wires or connections.
5. Faulty or misadjusted choke or throttle controls.
6. Faulty spark plug.
7. Low compression.
8. Faulty ACR mechanism.
9. Weak spark.
10. Fuel pump malfunction causing lack of fuel.
12. Flywheel key sheared.
13. Intake system leak.

**Engine Will Not Crank**
1. PTO drive is engaged.
2. Battery is discharged.
3. Safety interlock switch is engaged.
4. Loose or faulty wires or connections.
5. Faulty key switch or ignition switch.
6. Faulty electric starter.
7. Seized internal engine components.

**Engine Runs But Misses**
1. Dirt or water in the fuel system.
2. Spark plug faulty or fouled.
3. Poor quality of fuel.
4. Spark plug lead boot loose on plug.
5. Loose wires or connections that intermittently short the kill terminal of ignition module to ground.
7. Faulty ignititon module or improperly gapped.
8. Carburetor adjusted incorrectly.

**Engine Will Not Idle**
1. Dirt or water in the fuel system.
2. Stale fuel and/or gum in carburetor.
3. Faulty spark plug.
4. Fuel supply inadequate.
5. Idle fuel adjusting needle improperly set.
7. Low compression.
8. Restricted fuel tank cap vent.
Section 3
Troubleshooting

Engine Overheats
1. Air intake/grass screen, cooling fins, or cooling shrouds clogged.
2. Excessive engine load.
3. Low crankcase oil level.
4. High crankcase oil level.
5. Faulty carburetor.

Engine Knocks
1. Excessive engine load.
2. Low crankcase oil level.
3. Old or improper fuel.
4. Internal wear or damage.
5. Quality of fuel.
6. Incorrect grade of oil.

Engine Loses Power
1. Low crankcase oil level.
2. High crankcase oil level.
3. Dirty air cleaner element.
4. Dirt or water in the fuel system.
5. Excessive engine load.
7. Faulty spark plug.
8. Low compression.
10. Low battery.
11. Incorrect governor setting.

Engine Uses Excessive Amount of Oil
1. Incorrect oil viscosity/type.
2. Clogged, broken, or inoperative breather.
3. Worn or broken piston rings.
4. Worn cylinder bore.
5. Worn valve stems/valve guides.
6. Crankcase overfilled.

Oil Leaks from Oil Seals, Gaskets
1. Clogged, broken, or inoperative breather.
2. Worn or broken piston rings.
3. Piston blowby, or leaky valves.
4. Restricted exhaust.

External Engine Inspection
Before cleaning or disassembling the engine, make a thorough inspection of its external appearance and condition. This inspection can give clues to what might be found inside the engine (and the cause) when it is disassembled.

• Check for buildup of dirt and debris on the crankcase, cooling fins, grass screen and other external surfaces. Dirt or debris on these areas can cause overheating.

• Check for obvious oil leaks and damaged components. Excessive oil leakage can indicate a clogged or inoperative breather, worn or damaged seals or gaskets, or loose fasteners.

• Check the air cleaner cover and base for damage or indications of improper fit and seal.

• Check the air cleaner element. Look for holes, tears, cracked or damaged sealing surfaces, or other damage that could allow unfiltered air into the engine. Also note if the element is dirty or clogged. These could indicate improper maintenance.

• Check the carburetor throat for dirt. Dirt in the throat is further indication that the air cleaner was not functioning properly.

• Check if the oil level is within the operating range on the dipstick. If it is above, sniff for gasoline odor.

• Check the condition of the oil. Drain the oil into a container; it should flow freely. Check for metal chips and other foreign particles.

Sludge is a natural by-product of combustion; a small accumulation is normal. Excessive sludge formation could indicate the wrong type or weight of oil was used, the oil was not changed at the recommended intervals, an over-rich fuel mixture, or weak ignition, to name a few possible causes.

NOTE: It is good practice to drain oil at a location away from the workbench. Be sure to allow ample time for complete drainage.

Cleaning the Engine
After inspecting the external condition of the engine, clean the engine thoroughly before disassembling it. Also clean individual components as the engine is disassembled. Only clean parts can be accurately inspected and gauged for wear or damage. There are many commercially available cleaners that will quickly remove grease, oil, and grime from engine parts. When such a cleaner is used, follow the manufacturer’s instructions and safety precautions carefully.
Basic Engine Tests

Crankcase Vacuum Test
A partial vacuum should be present in the crankcase when the engine is operating. Pressure in the crankcase (normally caused by a clogged or improperly-operating breather) can cause oil to be forced out at oil seals, gaskets, or other available spots.

Crankcase vacuum is best measured with a water manometer or vacuum/pressure test gauge. See Section 2. Complete instructions are provided with the testers.

Test the crankcase vacuum with the manometer as follows:

1. Insert the rubber stopper into the oil fill hole. Be sure the pinch clamp is installed on the hose and use the tapered adapters to connect the hose between the stopper and one of the manometer tubes. Leave the other tube open to the atmosphere. Check that the water level in the manometer is at the “0” line. Make sure the pinch clamp is closed.

2. Start the engine and run at no-load high idle speed (3200 to 3750 RPM).

3. Open the clamp and note the water level in the tube.

The level in the engine side should be a minimum of 10.2 cm (4 in.) above the level in the open side.

If the level in the engine side is the same as the open side (no vacuum), or the level in the engine side is lower than the level in the open side (pressure), check for the conditions in the table below.

4. Close the pinch clamp before stopping the engine.

To perform the test with the vacuum/pressure gauge:

1. Insert the stopper as in step 1.

2. Insert the barbed gauge fitting into the hole in the stopper. Be sure the gauge needle is at “0”.

3. Run the engine, as in step 2, and observe the gauge reading. Needle movement to the left of “0” is a vacuum, and movement to the right indicates a pressure. A minimum of 10.2 cm (4 in.) of vacuum should be present.

Possible Cause | Solution
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Crankcase breather clogged or inoperative.</td>
<td>1. Disassemble breather, clean parts thoroughly, reassemble, and recheck pressure.</td>
</tr>
<tr>
<td>2. Seals and/or gaskets leaking. Loose or improperly torqued fasteners.</td>
<td>2. Replace all worn or damaged seals and gaskets. Make sure all fasteners are tightened securely. Use appropriate torque values and sequences when necessary.</td>
</tr>
<tr>
<td>3. Piston blowby or leaky valves. Confirm with cylinder leakdown test.</td>
<td>3. Recondition piston, rings, cylinder bore, valves, and valve guides.</td>
</tr>
<tr>
<td>4. Restricted exhaust.</td>
<td>4. Repair/replace restricted muffler/exhaust system.</td>
</tr>
</tbody>
</table>
Section 3
Troubleshooting

Compression Test
These engines are equipped with an automatic compression release (ACR) mechanism. Because of the ACR mechanism, it is difficult to obtain an accurate compression reading. As an alternate, use the leakdown test described below.

Cylinder Leakdown Test
A cylinder leakdown test can be a valuable alternative to a compression test. By pressurizing the combustion chamber from an external air source, you can determine if the valves or rings are leaking, and how badly.

The cylinder leakdown tester is a relatively simple, inexpensive leakdown tester for small engines. The tester includes a quick disconnect coupling for attaching the adapter hose and a holding tool.

Leakdown Test Instructions
1. Run the engine for 3-5 minutes to warm it up.
2. Remove the spark plug.
3. Rotate the crankshaft until the piston is at top dead center of the compression stroke. You will need to hold the engine in this position while testing. The holding tool supplied with the tester can be used if the PTO end of the crankshaft is accessible. Slide the holding tool onto the crankshaft, align the slot with one of the mounting holes on the PTO face, and tighten it onto the crankshaft. Install a 3/8” breaker bar into the slot of the holding tool, so it is perpendicular to both the holding tool and crankshaft, or insert a shoulder bolt through the slot and thread it into the mounting hole. If the flywheel end is more accessible, you can use a breaker bar and socket on the flywheel nut/screw to hold it in position. You may need an assistant to hold the breaker bar during testing. If the engine is mounted in a piece of equipment, you may be able to hold it by clamping or wedging a driven component. Just be certain that the engine cannot rotate off of TDC in either direction.
4. Install the adapter into the spark plug hole, but do not attach it to the tester at this time.
5. Connect an adequate air source (80-100 psi) to the tester.
6. Turn the regulator knob in the increase (clockwise) direction until the gauge needle is in the yellow set area at the low (right) end of the scale.
7. Connect the tester quick-disconnect to the adapter. Note the gauge reading and listen for escaping air at the carburetor inlet, exhaust outlet, and/or crankcase breather.
8. Check your test results against the table below:

Leakdown Test Results
Air escaping from crankcase breather ................................................ Defective rings or worn cylinder walls.
Air escaping from exhaust system .................................................. Defective exhaust valve.
Air escaping from carburetor ......................................................... Defective intake valve.
Gauge reading in low (green) zone .................................................. Piston rings and cylinder in good condition.
Gauge reading in moderate (yellow) zone ........................................ Engine is still usable, but there is some wear present. Customer should start planning for overhaul or replacement.
Gauge reading in high (red) zone ..................................................... Rings and/or cylinder have considerable wear. Engine should be reconditioned or replaced.
Section 4
Air Cleaner and Air Intake System

Air Cleaner
These engines are equipped with a replaceable, high density, paper air cleaner element. Some engines also have an oiled, foam precleaner, located in the outer air cleaner cover. See Figure 4-1.

Intake air is drawn in through the upper opening from the blower housing, passes through the precleaner (if so equipped), the paper element and then into the carburetor. The outer air cleaner cover is secured by two knobs, and removed by turning the knobs counterclockwise.

Check the air cleaner daily or before starting the engine. Check for and correct any buildup of dirt and debris, and loose or damaged components.

NOTE: Operating the engine with loose or damaged air cleaner components could allow unfiltered air into the engine causing premature wear and failure.

Pre cleaner Service
If so equipped, wash and oil the precleaner annually or every 25 hours of operation (more often under extremely dusty or dirty conditions).

1. Loosen the air cleaner cover knobs and remove the cover.
2. Remove the precleaner.
Section 4
Air Cleaner and Air Intake System

3. Wash the precleaner in warm water with detergent. Rinse the precleaner thoroughly until all traces of detergent are eliminated. Squeeze out excess water (do not wring). Allow the precleaner to air dry.

4. Saturate the precleaner with new engine oil. Squeeze out all excess oil.

5. Reinstall the precleaner into the outer cover.

6. Install the air cleaner cover and secure with the two knobs.

7. When precleaner replacement is necessary, order Kohler Part No. 20 083 03-S.

8. When element replacement is necessary, order Kohler Part No. 20 083 02-S.

Inspect Air Cleaner Components
Whenever the air cleaner cover is removed, or the paper element or precleaner is serviced, check the following areas/components:

Outer Air Cleaner Cover - Make sure the air cleaner cover is in good condition, not cracked, damaged, or missing a retaining knob, which can affect the sealing ability of the air cleaner element.

Air Cleaner Base - Make sure the base is properly secured and not cracked or damaged. Since the air cleaner base and carburetor are secured to the intake port with common hardware, it is extremely important that the fasteners securing these components are tight at all times. The air cleaner base also provides the mounting points for the air cleaner cover retaining studs. Make sure the bosses are not cracked, broken or damaged, and the studs are properly secured.

Before reinstalling an air cleaner base that has been removed, make sure the metal bushings in the base mounting holes are present. See Figure 4-2. The bushings prevent damage to the base and maintain the proper mounting torque.

Paper Element Service
Check the paper element annually or every 25 hours of operation (more often under extremely dusty or dirty conditions). Clean or replace the element as necessary. Replace the air cleaner element annually or every 100 hours.

1. Remove the air cleaner cover and the precleaner (if so equipped), service as required.

2. Remove the air cleaner element with the integral rubber seal.

3. Gently tap the pleated side of the paper element to dislodge dirt. Do not wash the paper element or use pressurized air, as this will damage the element. Replace a dirty, bent, or damaged element with a genuine Kohler element. Handle new elements carefully; do not use if the rubber seal is damaged.

4. Clean all air cleaner components of any accumulated dirt or foreign material. Prevent any dirt from entering the throat of the carburetor.

5. Install the air cleaner element with the pleated side out and seat the rubber seal onto the edges of the air cleaner base.

6. Reinstall the precleaner (if so equipped), into the upper section of the air cleaner cover. Make sure the hole in the precleaner is aligned with the upper mounting knob. See Figure 4-1.

7. Reinstall the air cleaner cover and secure with the two knobs.

Figure 4-2. Bushings in Air Cleaner Base.

Breather Hose - Make sure the hose is not cracked or damaged, and attached to both the air cleaner base and valve cover.

NOTE: Damaged, worn, or loose air cleaner components can allow unfiltered air into the engine causing premature wear and failure. Tighten or replace all loose or damaged components.
Reassembly
The following procedure is for complete assembly of all air cleaner components. Steps 1-3 are necessary only if the air cleaner base and/or the cover mounting studs were removed in Section 8, Disassembly.

1. Install the mounting studs into the air cleaner base if removed previously. Tighten the studs until bottomed, or to the end of threads (do not force).

2. Install the air cleaner base gasket and air cleaner base, with the two metal spacers, onto the mounting stud(s) and/or alignment pin. Make sure the upper mounting tab is located above the closure plate. Install and finger tighten the hex flange nut(s). When a long M6 thread forming mounting screw is used, apply hand pressure to keep the parts from shifting, then remove the alignment pin and install the M6 thread forming screw. DO NOT OIL. Torque the nut(s) to 5.5 N·m (48 in. lb.). Torque the screw to 8.0 N·m (70 in. lb.) into a new hole, or 5.5 N·m (48 in. lb.) into a used hole, do not over tighten.

3. Reconnect the breather hose and perform the governor adjustment (Section 5, Initial Governor Adjustment).

4. Install the air cleaner element with the pleated side out and seat the rubber seal onto the edges of the air cleaner base.

5. Install the serviced precleaner (if so equipped) into the air cleaner cover. Make sure the hole in the precleaner is aligned with the upper mounting knob.

6. Reinstall the air cleaner cover and secure with the two knobs.
Section 4
Air Cleaner and Air Intake System

Air Intake/Cooling System

Clean Air Intake/Cooling Areas
To ensure proper cooling, make sure the grass screen, cooling fins, and other external surfaces of the engine are kept clean at all times.

Annually or every 100 hours of operation, (more often under extremely dusty, dirty conditions), remove the blower housing and any other cooling shrouds. Clean the cooling fins and external surfaces as necessary. Make sure all parts are reinstalled. Torque the M6 blower housing fasteners to 7.7 N·m (68.3 in. lb.).

NOTE: Operating the engine with a blocked grass screen, dirty or plugged cooling fins, and/or cooling shrouds removed, will cause engine damage due to overheating.
### Fuel Recommendations

**WARNING: Explosive Fuel!**
Gasoline is extremely flammable and its vapors can explode if ignited. Store gasoline only in approved containers, in well-ventilated, unoccupied buildings, away from sparks or flames. Do not fill the fuel tank while the engine is hot or running, since spilled fuel could ignite if it comes in contact with hot parts or sparks from ignition. Do not start the engine near spilled fuel. Never use gasoline as a cleaning agent.

**General Recommendations**
Purchase gasoline in small quantities and store in clean, approved containers. A container with a capacity of 2 gallons or less with a pouring spout is recommended. Such a container is easier to handle and helps eliminate spillage during refueling.

- Do not use gasoline left over from the previous season, to minimize gum deposits in your fuel system and to ensure easy starting.
- Do not add oil to the gasoline.
- Do not overfill the fuel tank. Leave room for the fuel to expand.

**Fuel Type**
For best results use only clean, fresh, unleaded gasoline with a pump sticker octane rating of 87 (R+M)/2 or higher. In countries using the Research Octane Number (RON), it should be 90 octane minimum. Leaded gasoline is not recommended and must not be used on EFI engines or on other models where exhaust emissions are regulated.

**Gasoline/Alcohol blends**
Gasohol (up to 10% ethyl alcohol, 90% unleaded gasoline by volume) is approved as a fuel for Kohler engines. Other gasoline/alcohol blends including E20 and E85 are not to be used and not approved. Any failures resulting from use of these fuels will not be warranted.

**Gasoline/Ether blends**
Methyl Tertiary Butyl Ether (MTBE) and unleaded gasoline blends (up to a maximum of 15% MTBE by volume) are approved as a fuel for Kohler engines. Other gasoline/ether blends are not approved.

### Fuel System
The typical fuel system and related components include the fuel tank, in-line fuel filter, fuel pump, carburetor, and fuel lines. Some applications use gravity feed without a fuel pump.

**Operation**
The fuel from the tank is moved through the in-line filter and fuel lines by the fuel pump. On engines not equipped with a fuel pump, the fuel tank outlet is located above the carburetor inlet and gravity moves the fuel.

Fuel then enters the carburetor float bowl and is moved into the carburetor body. There, the fuel is mixed with air. This fuel-air mixture is then burned in the engine combustion chamber.

**Troubleshooting**
Use the following procedure to check if fuel is reaching the combustion chamber.
Section 5
Fuel System and Governor

Fuel System Troubleshooting Guide

<table>
<thead>
<tr>
<th>Test</th>
<th>Conclusion</th>
</tr>
</thead>
</table>
| 1. Check for the following:  
   a. Make sure the fuel tank contains clean, fresh, proper fuel.  
   b. Make sure the vent in fuel cap is open.  
   c. Make sure the fuel valve is open. | 2. If there is fuel at the tip of the spark plug, fuel is reaching the combustion chamber.  
If there is no fuel at the tip of the spark plug, check for fuel flow from the fuel tank (Test 3). |
| 2. Check for fuel in the combustion chamber.  
   a. Disconnect and ground spark plug lead.  
   b. Close the choke on the carburetor.  
   c. Crank the engine several times.  
   d. Remove the spark plug and check for fuel at the tip. | 3. If fuel does flow from the line, reconnect line and check for faulty fuel pump (Test 4).  
If fuel does not flow from the line, check for clogged fuel tank vent, fuel pickup screen, shutoff valve, and fuel lines. |
| 3. Check for fuel flow from the tank to the fuel pump.  
   a. Remove the fuel line from the inlet fitting of the fuel pump.  
   b. Hold the line below the bottom of the tank.  
   Open the shutoff valve (if so equipped) and observe flow. | 4. If fuel does flow from the line, check for faulty carburetor. (Refer to the "Carburetor" portions of this section.)  
If fuel does not flow from the line, check for clogged fuel line. If the fuel line is unobstructed, the fuel pump is faulty and must be replaced. |
| 4. Check the operation of fuel pump.  
   a. Remove the fuel line from the inlet fitting of the carburetor.  
   b. Crank the engine several times and observe flow. |  |

Fuel Filter
Some engines are equipped with an in-line fuel filter. Periodically inspect the filter and replace when dirty. Replacement is recommended annually or every 100 hours. Use a genuine Kohler filter.

Fuel Line
These engines use low permeation rated fuel lines, certified to comply with California and U.S. EPA evaporative emission requirements. Fuel lines that do not meet these requirements may not be used. Order replacement hose through a Kohler Service Center.

Fuel Pump
Some engines are equipped with an optional pulse fuel pump. See Figure 5-1.

Operation
The fuel pump has two internal chambers separated by a diaphragm. The air chamber is connected to the engine crankcase by a rubber hose. The fuel chamber has an inlet from the fuel tank, and an outlet to the carburetor. The inlet and outlet each have an internal, one-way check valve.

Alternating negative and positive pressures in the crankcase activate the pump. When the piston moves upward in the cylinder, negative pressure (vacuum) is created in the crankcase and in the air chamber of the pump. The diaphragm flexes toward the negative pressure, and the suction draws fuel past the inlet check valve, into the fuel chamber. Downward movement of the piston causes a positive pressure in the crankcase and air chamber, pushing the diaphragm in the opposite direction, putting pressure on the fuel. The inlet check valve has now closed, so the fuel is forced past the outlet check valve, to the carburetor.

Repair
Pulse fuel pumps are not serviceable and must be replaced when faulty.

Removal
1. Disconnect the inlet, outlet, and pulse lines from the fuel pump. Mark the lines for proper reassembly.
2. Remove the hex flange screws attaching the fuel pump.
Installation

1. Install the new fuel pump, and secure with the hex flange screws. Torque the hex flange screws to 5.9 N·m (52 in. lb.). Do not over tighten.

2. Connect the inlet, outlet, and pulse lines to their respective fittings on pump. Secure with the clamps. See Figure 5-1.

WARNING: Explosive Fuel
Gasoline is extremely flammable and its vapors can explode if ignited. Store gasoline only in approved containers, in well ventilated, unoccupied buildings, away from sparks or flames. Do not fill the fuel tank while the engine is hot or running, since spilled fuel could ignite if it comes in contact with hot parts or sparks from ignition. Do not start the engine near spilled fuel. Never use gasoline as a cleaning agent.

Troubleshooting – Fuel System
If engine troubles are experienced that appear to be fuel system related, check the following areas before adjusting or disassembling the carburetor.

• Make sure the fuel tank is filled with clean, fresh gasoline.

• Make sure the fuel cap vent is not blocked and that it is operating properly.

• Make sure fuel is reaching the carburetor. This includes checking the fuel shut-off valve, fuel tank filter screen, in-line fuel filter, fuel lines, and fuel pump (as equipped), for restrictions or faulty components.

• Make sure the air cleaner base and carburetor are securely fastened to the engine using gaskets in good condition.

• Make sure the air cleaner element is clean, and all air cleaner components are fastened securely.

• Make sure the ignition system, governor system, exhaust system, and throttle and choke controls are operating properly.

If, after checking the items listed above, starting problems or conditions similar to those listed in the following table exist, it may be necessary to adjust or service the carburetor.

Carburetor
These engines are equipped with a Walbro fixed main jet carburetor. See Figure 5-2. The carburetors will have a low idle speed adjustment screw, and either fixed idle, or a limiter cap on the idle fuel adjustment needle.

Figure 5-1. Pulse Fuel Pump.

Figure 5-2. Carburetor.
Section 5
Fuel System and Governor

Troubleshooting – Fuel System

<table>
<thead>
<tr>
<th>Condition</th>
<th>Possible Cause/Probable Remedy</th>
</tr>
</thead>
</table>
| 1. Engine starts hard, runs roughly or stalls at idle speed. | 1a. Low idle fuel mixture/speed improperly adjusted. Adjust the low idle speed screw, then adjust the low idle fuel needle.  
1b. Improper choke adjustment. |
| 2. Engine runs rich. (Indicated by black, sooty exhaust smoke, misfiring, loss of speed and power, governor hunting, or excessive throttle opening). | 2a. Choke partially closed during operation. Check the choke lever/linkage to ensure choke is operating properly.  
2b. Low idle fuel mixture is improperly adjusted. Adjust low idle fuel needle.  
2c. Float level is set too high. With fuel bowl removed and carburetor inverted, the exposed surface of float must be parallel with the bowl gasket surface of the carburetor body.  
2d. Dirt under fuel inlet needle. Remove needle; clean needle and seat and blow with compressed air.  
2e. Bowl vent or air bleeds plugged. Remove fuel bowl, low idle fuel adjusting needle, and welch plugs. Clean vent, ports, and air bleeds. Blow out all passages with compressed air.  
2g. Leaky, cracked, or damaged float. Submerge float to check for leaks. |
3b. Float level is set too low. With fuel bowl removed and carburetor inverted, the exposed surface of float must be parallel with the bowl gasket surface of the carburetor body.  
3c. Idle holes plugged; dirt in fuel delivery channels. Remove fuel bowl, low idle fuel adjusting needle, and welch plugs. Clean main fuel jet and all passages; blow out with compressed air. |
| 4. Fuel leaks from carburetor. | 4a. Float level set too high. See Remedy 2c.  
4b. Dirt under fuel inlet needle. See Remedy 2d.  
4d. Float is cracked or damaged. Replace float.  
4e. Bowl retaining screw gasket damaged. Replace gasket.  

Carburetor Adjustment
NOTE: Carburetor adjustments should be made only after the engine has warmed up.

The carburetor is designed to deliver the correct fuel-to-air mixture to the engine under all operating conditions. The main fuel jet is calibrated at the factory and is not adjustable. The idle fuel adjustment needle is also set at the factory and normally does not need adjustment. If the engine is hard starting or does not operate properly, however, it may be necessary to adjust or service the carburetor.

Figure 5-3. Fixed Main Jet Carburetor.
Low Idle Mixture Adjustment*

NOTE: Engines will have fixed idle (no adjustment possible) or a limiter cap on the idle fuel adjustment needle. Step 2 can only be performed within the limits allowed by the cap.

1. Start the engine and run at half throttle for 5 to 10 minutes to warm up. The engine must be warm before doing step 2.

2. Low Idle Fuel Needle Setting: Place the throttle into the idle or slow position.

Turn the low idle fuel adjustment needle out (counterclockwise) from the preliminary setting until engine speed decreases (rich). Note the position of the needle.

Now turn the adjusting needle in (clockwise). The engine speed may increase, then it will decrease as the needle is turned in (lean). Note the position of the needle.

Set the adjusting needle midway between the rich and lean settings. See Figure 5-4.

Low Idle Speed Setting

1. Start the engine and run at half throttle for 5 to 10 minutes to warm up. The engine must be warm before doing step 2.

2. Low Idle Speed Setting: Place the throttle control into the idle or slow position. Set the low idle speed by turning the low idle speed adjusting screw in or out. Check the speed using a tachometer.

NOTE: The actual low idle speed depends on the application–refer to equipment manufacturer’s recommendations. The recommended low idle speed for basic engines is 1500 RPM. To ensure best results when setting the low idle fuel needle, the low idle speed must not exceed 1500 RPM (±75 RPM).

Figure 5-4. Optimum Low Idle Fuel Setting.

*NOTE: If the engine is equipped with a governed idle adjustment (See Figure 5-23), the governor will compensate for speed changes due to the low idle mixture adjustment. Disable the governed idle control by backing out the governed idle adjusting screw and setting a fixed idle speed using the idle speed screw on the carburetor. Make the low idle mixture adjustment and then reset the governed idle speed at the adjusting screw.
Disassembly

Figure 5-5. Carburetor - Exploded View.

1. Remove the bowl retaining screw or fuel shut-off solenoid, retaining screw gasket, and fuel bowl.

2. Remove the bowl gasket, float shaft, float, and fuel inlet needle.

3. **Do not** attempt to remove the low idle fuel adjustment needle if it has a limiter cap.

Further disassembly to remove the Welch plugs, main fuel jet, throttle plate and shaft, and choke plate and shaft is recommended only if these parts are to be cleaned or replaced.

**Welch Plug Removal**

In order to clean the idle ports and bowl vent thoroughly, remove the Welch plugs covering these areas.

Use SPX Tool No. **KO-1018** and the following procedure to remove the Welch plugs. See Figure 5-6.

1. Pierce the Welch plug with the tip of the tool.

   **NOTE:** To prevent damage to the carburetor, do not allow the tool to strike the carburetor body.

2. Pry out the Welch plug with the tip of the tool.
Main Fuel Jet Removal
The main jet is pressed into the side of the tower portion of the body. Removal is not recommended, unless a high-altitude kit is being installed, in which case the removal instructions will be included in the kit.

Fuel Inlet Seat Removal
The fuel inlet seat is pressed into the carburetor body, do not attempt to remove it. If necessary, clean it in place with aerosol carburetor cleaner.

Choke Shaft Removal
1. Because the edges of the choke plate are beveled, mark the choke plate and carburetor body, to ensure correct reassembly. See Figure 5-7.

Also note the choke plate position in the bore, and the position of the choke lever and choke return spring.

2. The choke plate is inserted into a slot in the choke shaft. Grasp the choke plate with pliers, and pull it out of the slot. See Figure 5-8.

3. Remove the choke shaft and choke return spring.

Throttle Shaft Removal
Do not attempt to remove the throttle shaft, as repair kits are not available. Throttle shaft wear is normally accompanied by corresponding wear to the carburetor body, making it impractical to attempt a cost-effective repair. Replace the entire carburetor if the throttle shaft is worn.

Cleaning

**WARNING: Flammable Solvents!**
Carburetor cleaners and solvents are extremely flammable. Keep sparks, flames, and other sources of ignition away from the area. Follow the cleaner manufacturer’s warnings and instructions on its proper and safe use. Never use gasoline as a cleaning agent.

All parts should be cleaned thoroughly using a commercial carburetor cleaner. Make sure all gum deposits are removed from the following areas.

- Carburetor body and bore; especially the areas where the throttle plate, choke plate and shafts are seated.
- Idle fuel and idle ports in carburetor bore, main jet, bowl vent, and fuel inlet needle and seat.
- Float and float hinge.
- Fuel bowl.
Section 5
Fuel System and Governor

- Throttle plate, choke plate, throttle shaft, and choke shaft.

NOTE: Do not submerge the carburetor in cleaner or solvent when plastic, fiber, rubber, foam seals or gaskets are installed. The cleaner may damage these components.

Inspection
Carefully inspect all components and replace those that are worn or damaged.

- Inspect the carburetor body for cracks, holes, and other wear or damage.
- Inspect the float for cracks, holes, and missing or damaged float tabs. Check the float hinge and pin for wear or damage.
- Inspect the fuel inlet needle and seat for wear or damage.
- Inspect the tip of the low idle fuel adjustment needle for wear or grooves.
- Inspect the throttle and choke shaft and plate assemblies for wear or excessive play.

Repair
Always use new gaskets when servicing or reinstalling carburetors. Repair kits are available which include new gaskets and other components. Always refer to the Parts Manual for the engine being serviced to ensure the correct repair kits are ordered.

Reassembly

Choke Shaft Installation
1. Install the choke return spring to the choke shaft.
2. Insert the choke shaft with the return spring into the carburetor body.
3. Rotate the choke lever approximately 1/2 turn \textit{counterclockwise}. Make sure the choke return spring hooks on the carburetor body.
4. Position the choke plate as marked during disassembly. Insert the choke plate into the slot in the choke shaft. Make sure the choke shaft is locked between the tabs on the choke plate.

Welch Plug Installation
Use SPX Tool No. KO1017 and install new plugs as follows:

1. Position the carburetor body with the welch plug cavities to the top.
2. Place a new welch plug into the cavity with the raised surface \textbf{up}.
3. Use the end of the tool that is about the same size as the plug and flatten the plug. \textbf{Do not} force the plug below the surface of the cavity. See Figure 5-9.

4. After the plugs are installed, seal them with Glyptal™ (or an equivalent sealant). Allow the sealant to dry.

NOTE: If a commercial sealant is not available, fingernail polish can be used.

Carburetor Reassembly
1. Install the low idle speed adjusting screw and spring.
2. If the low idle fuel adjusting needle contains a limiter, adjust to the midpoint within the adjustment range.
3. Insert the fuel inlet needle into the float. Align the needle with the seat and lower the float into the carburetor body. See Figure 5-10. Install the float shaft.
4. Install the bowl gasket, fuel bowl, bowl retaining screw gasket, and bowl retaining screw or fuel solenoid.

Torque the bowl retaining screw to **5.1-6.2 N·m** (45-55 in. lb.).

**Fuel Shut-off Solenoid**
Many engines are equipped with a fuel shut-off solenoid installed in place of the bowl retaining screw to eliminate backfiring when the engine is shut down. If backfiring occurs on engines equipped with this solenoid, verify that the correct shutdown procedure is being used. In order for the solenoid to be effective, the engine must be running between **half and full throttle** when the key is turned off. Next, check the battery to ensure that it is not discharged or faulty. A minimum of 7.3 volts DC is required to activate the solenoid. Also check to see that the ground lead from the carburetor body to the air cleaner base mounting screw is properly connected.

If these check out, the solenoid should be removed for bench testing. Remember to shut off the fuel supply and catch any fuel spilling from the carburetor as the solenoid is removed.

Bench test the solenoid by grounding the solenoid case and applying 12 volt DC to the spade terminal. If the plunger does not retract, the solenoid is faulty and must be replaced. Always use a new fuel bowl gasket whenever the solenoid is installed. Refer to the wiring diagram in Section 7 and connect the fuel shut-off solenoid.

**High Altitude Operation**
Operating the engine with the wrong engine configuration at a given altitude may increase its emissions and decrease fuel efficiency and performance. To ensure correct engine operation at altitudes above 1219 meters (4000 ft), it may be necessary to have an authorized Kohler dealer install a special high altitude jet kit in the carburetor. If a high altitude kit has been installed, the engine must be reconverted to the original jet size, before it is operated at lower altitudes, or overheating and engine damage can result.

To obtain high altitude kit information or locate a dealer near you, call 1-800-544-2444 to find the names of the nearest Kohler Co. Service Centers or, access our web site at: www.kohlerengines.com and click on the “Service & Dealer Locator” located in the upper right hand corner. The service center will need your engine specification number which is found on your Engine ID Label.

**Unitized Throttle and Choke Control**
Some engines are equipped with a unitized throttle and choke control. This assembly controls the choke and engine speed with a single lever. See Figure 5-12.
Throttle Cable Adjustment

1. Loosen the control cable clamp. See Figure 5-12.

2. Place the throttle control lever of the equipment into the fast or high speed position. The actuating tab+ of the choke lever should be just below the end of the choke adjusting screw. See Figure 5-13.

3. Early Models: Early models use a single alignment hole to set the engine RPM. Align the hole in the throttle lever with the hole in the speed control bracket by inserting a pencil or 6.35 mm (1/4 in.) drill bit. See Figure 5-15.

NOTE: The choke is placed on by moving the throttle control slightly past the fast position. If the throttle control does not have a designated choke on position, be sure to leave sufficient throttle control travel past the fast position. This will enable the choke to be placed on. See Figure 5-14.

Later Models: Later models use a new control assembly, identified by two opposing alignment holes (close to the throttle lever pivot), instead of one. Based upon the intended high-speed (RPM) setting, throttle cable adjustment must be made by matching the hole in the control lever with the correct alignment hole. Use the lower (left side) hole for high-speed settings above 3000 RPM. Use the upper (right side) hole for high-speed settings lower than 3000 RPM. Move the throttle lever to align the hole in the lever with the correct hole in the control bracket. Insert a pencil or a 6.35 mm (1/4 in.) drill bit to hold in position. See Figure 5-16.
4. Pull on the outer shield of the throttle control cable to remove any slack. Tighten the cable clamp securely.

NOTE: If the engine develops sufficient speed to disengage the starter but does not keep running (a false start), engine rotation must be allowed to come to a complete stop before attempting to restart the engine. If the starter is engaged while the flywheel is rotating, the starter pinion and flywheel ring gear may clash, resulting in damage to the starter.

If the starter does not turn the engine over, shut the starter off immediately. Do **not** make further attempts to start the engine until the condition is corrected. Do not jump start using another battery (refer to Battery, Section 7). See your Kohler Engine Service Dealer for trouble analysis.

4. **For Operation** – After the engine starts, move the throttle/choke control from the fast/choke on position and set the desired engine operating speed (between the slow and fast position).

**High Speed (RPM) Adjustment**
The recommended maximum no-load high speed (RPM) for most engines is **3300 RPM**. The actual high speed (RPM) depends on the application. Refer to the equipment manufacturer’s instructions for specific information.

**WARNING: Overspeed is Hazardous!**
*Do not tamper with the governor setting. Over speed is hazardous and could cause personal injury.*

1. Make sure the throttle cable is adjusted properly (see ‘Throttle Cable Adjustment’).

2. Start the engine and allow it to warm up. Place the throttle control lever into the fast or high speed position. Turn the choke adjustment screw (see Figure 5-13) out/counterclockwise, so there is clearance from the choke lever, and that contact cannot occur during Step 4. See Figure 5-13.

3. **Early Models:** Early models use a single alignment hole to set the engine RPM. Align the hole in the throttle lever with the hole in the speed control bracket by inserting a pencil or 6.35 mm (1/4 in.) drill bit. See Figure 5-15.
Choke Adjustment
This procedure must follow the High Speed Adjustment just described. If not already completed, perform that operation first.

1. Turn the choke adjusting screw **out** (counterclockwise), until it no longer contacts the choke lever.

2. Then turn it back **in** (clockwise), until it **just** makes contact.

3. While observing the choke link, move the throttle control lever to the low idle (slow) position, then back to full throttle (fast). The choke link should not move as the throttle moves through the normal range. If it does, back the adjusting screw out until it no longer moves.

4. Move the throttle control lever to the choke position. Check if the choke has fully closed by placing your finger on the right side of the lower end of the choke lever/choke link and applying gentle pressure towards the carburetor. If the controls have been properly set, the link should not move.

Separate Throttle and Choke Control
Some engines are equipped with separate throttle and choke controls. This allows you to adjust the choke and throttle controls individually.

Install Separate Control Cables

Throttle Control Installation

1. Loosen the two cable clamp screws on the speed control bracket assembly. See Figure 5-19.

2. Move the application throttle control lever to the maximum full (fast) throttle position, and then move it back 3/16” or 4.75 mm. Insert the cable boden wire into the throttle control lever on the control plate.

3. Position the throttle cable under the cable clamp.

Later Models: Later models utilize a new design control assembly, identified by two opposing alignment holes (close to the throttle lever pivot), instead of one. Based upon the intended high speed (RPM) setting, throttle cable adjustment must be made matching the hole in the control lever with the appropriate alignment hole. Use the lower (left side) hole for high-speed settings 3000 RPM and above. Use the upper (right side) hole for high-speed settings less than 3000 RPM. Move the throttle lever to align the hole in the lever with the appropriate hole in the control bracket. Insert a pencil or a 6.35 mm (1/4 in) drill bit to hold in position. See Figure 5-16.

4. Loosen the speed control bracket mounting screws. Slide the bracket forward or backward, until the desired high speed (RPM) is reached. See Figure 5-18. Check the speed with a tachometer.

Figure 5-18. Adjusting High Speed (RPM).

To **increase** the high speed (RPM), move the bracket toward the carburetor.

To **decrease** the high speed (RPM), move the bracket away from the carburetor.

5. Tighten the speed control bracket mounting screws. Recheck the speed with a tachometer and readjust if necessary.

Torque the mounting screws as follows:

Into new as-cast hole – **11.0 N·m (95 in. lb.)**.
Into used hole – **7.5 N·m (65 in. lb.)**.

6. Adjust the choke (see Choke Adjustment which follows).
Section 5
Fuel System and Governor

Figure 5-19. Separate Choke and Throttle Cable Controls.

4. **Early Models:** Early models use a single alignment hole to set the engine RPM. Align the hole in the throttle lever with the hole in the speed control bracket by inserting a pencil or 6.35 mm (1/4 in.) drill bit. See Figure 5-20.

Figure 5-20. Alignment Hole in Speed Control Bracket and Throttle Lever. (Early Models)

5. Pull on the outer shield of the throttle control cable to remove any slack. Tighten the cable clamp securely.

Figure 5-21. Alignment Holes in Speed Control Bracket and Throttle Lever. (Later Models)

6. Move the application throttle lever to the slow position, then to full throttle. Check the engine control to ensure it stops against the stop screw, which means it is properly set.

**Choke Control Installation**

1. Connect the choke cable boden wire to the engine choke control lever on the speed control bracket assembly.

2. Position the choke cable under the cable clamp.

3. Push/move the choke control to the **off** position in the application panel until it bottoms, then pull it back approximately 1/16 in.

4. Push on the choke cable, ahead of the clamp on the engine control plate, until the choke lever stops. Do not force. Then tighten the cable clamp screw.

5. Move the choke control until it stops (**on** position). Check that the choke link cannot be moved towards the carburetor by applying finger pressure on the lower link/lever below the engine control plate. If the choke link moves, readjust by following steps 3 and 4.

6. Push/move the choke control in/down until it bottoms. The choke lever and link should be to the right at the end of its travel, with linkage free so the engine does not run on partial choke.

Later Models: Later models utilize a new design control assembly, identified by two opposing alignment holes (close to the throttle lever pivot), instead of one. Based upon the intended high speed (RPM) setting, throttle cable adjustment must be made matching the hole in the control lever with the appropriate alignment hole. Use the lower (left side) hole for high-speed settings 3000 RPM and above. Use the upper (right side) hole for high-speed settings less than 3000 RPM. Move the throttle lever to align the hole in the lever with the appropriate hole in the control bracket. Insert a pencil or a 6.35 mm (1/4 in.) drill bit to hold in position. See Figure 5-21.
Section 5
Fuel System and Governor

Starting an Engine Equipped with Separate Control Cables
1. Place the throttle control midway between the slow and fast positions. Place the choke control into the on position.

2. Start the engine.

3. For a Cold Engine – Gradually return the choke control to the off position after the engine starts and warms up.

   The engine/equipment may be operated during the warm up period, but it may be necessary to leave the choke partially on until the engine warms up.

4. For a Warm Engine – Return choke to off position as soon as engine starts.

Changing the High Speed (RPM) on the Engines with Separate Controls (Increase or Decrease RPM)
1. Check that the governor spring and installation matches the intended high speed RPM operating range. Refer to Figure 5-27 or 5-28.

2. Start the engine, move the application throttle lever to full throttle/fast, and loosen the mounting screws of the main speed control bracket to allow repositioning. See Figure 5-22.

4. To ensure that the RPM has been obtained, move the throttle lever to low idle/slow then back to full throttle/fast position and check the RPM with a tachometer.

Setting the Low Idle RPM
1. Move the application control to slow position.

2. Using a tachometer, check the RPM. Then, using a screwdriver, turn the low idle speed screw (see Figure 5-3) inward (clockwise) to increase the RPM, and outward (counterclockwise) to lower the RPM.

Governed Idle Adjustment
A governed idle control system was supplied as an option on early engines and is standard on later model engines. The purpose of this system is to maintain a desired idle speed regardless of ambient conditions (temperature, parasitic load, etc.) that may change. The later models can be identified by the two opposing alignment holes, (adjacent from the throttle lever pivot) rather than one. Based upon the intended high speed (RPM) setting, cable adjustment must be made matching the hole in the control lever with the appropriate alignment hole.

The system requires an additional procedure for setting the idle speed. If speed adjustments are required proceed as follows.

1. Make any necessary speed or control adjustments following the appropriate instructions already covered in this section.

2. Move the throttle control to the idle position. Hold the governor lever away from the carburetor, so the throttle lever is tight against the idle speed adjusting screw. Check the speed with a tachometer and adjust it to 1500-1750 RPM.

3. Release the governor lever and allow the engine to return to the governed idle speed. Check it with a tachometer against the equipment manufacturers recommended idle speed. If adjustment is necessary, use the governed idle adjusting screw on the speed control assembly (see Figure 5-23). Turn the screw clockwise to increase the governed idle speed and counterclockwise to decrease it.
Figure 5-23. Location of Governed Idle Adjusting Screw.

**Governor**

These engines are equipped with a centrifugal flyweight mechanical governor, designed to hold the engine speed constant under changing load conditions. The governor gear/flyweight mechanism is mounted on the closure plate in the crankcase, and is driven off a gear on the crankshaft.

**NOTE:** Flyweights must be installed perpendicular to the nylon gear as shown. Improper installation of the flyweights may cause damage to the governor gear. See Figure 5-24.

The governor lever is clamped on the protruding end of the shaft and connected with linkage to the throttle lever on the carburetor, so any rotation of the shaft causes corresponding movement of the throttle plate.

When the engine is at rest, and the throttle is in the fast position, the tension of the governor spring holds the throttle plate open. When the engine is operating (the governor gear assembly is rotating), the force applied by the regulating pin against the cross shaft tends to close the throttle plate. The governor spring tension and the force applied by the regulating pin are in equilibrium during operation, holding the engine speed constant.

When load is applied and the engine speed (and governor gear speed) decreases, the governor spring tension moves the governor arm to open the throttle plate wider. This allows more fuel into the engine; increasing engine speed. This action takes place very rapidly, so a reduction in speed is hardly noticed. As the speed reaches the governed setting, the governor spring tension and the force applied by the regulating pin will again be in equilibrium. This maintains the engine speed at a relatively constant level.

The governed speed setting is determined by the position of the throttle control. It can be variable or constant, depending on the application.

**Initial Adjustment**

Make this initial adjustment whenever the governor arm is loosened or removed from the cross shaft. To ensure proper setting, make sure the throttle linkage is connected to the governor arm and the throttle lever on the carburetor. See Figures 5-25 and 5-26.

1. Move the governor lever toward the carburetor (wide open throttle). **Do not** apply excess force flexing or distorting the throttle link.

2. Grasp the cross shaft with pliers, and turn the shaft **counterclockwise** as far as it will go, then tighten the hex nut. Torque the hex nut to 7.0-8.5 N·m (60-75 in. lb.).

**Operation**

As the governor gear rotates, centrifugal force causes the flyweights to move outward as speed increases. As the flyweights move outward, they cause the regulating pin to move outward.

The regulating pin contacts the tab on the cross shaft, causing the shaft to rotate. One end of the cross shaft protrudes through the side of the crankcase.
Governor Sensitivity Adjustment
Governor sensitivity is adjusted by repositioning the governor spring in the holes in the governor lever. If speed surging occurs with a change in load, the governor is set too sensitive. If a big drop in speed occurs when a normal load is applied, the governor should be set for greater sensitivity.

The desired high speed setting (RPM) will determine the governor spring position in the governor lever and the throttle lever, as well as the spring used. See Figure 5-27 and 5-28.

<table>
<thead>
<tr>
<th>High Speed RPM</th>
<th>Governed Idle RPM</th>
<th>Governed Lever Hole No.</th>
<th>Throttle Lever Hole No.</th>
<th>White Spring</th>
<th>Green Spring</th>
<th>Black Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>3201-3400</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3201-3400</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3201-3400</td>
<td>1601-1800</td>
<td>2</td>
<td>2</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5-27. Early Style Governor Spring Location Chart.
### Figure 5-28. Later Style Governor Spring Location Chart.

<table>
<thead>
<tr>
<th>High Speed RPM</th>
<th>Governed Idle RPM</th>
<th>Governed Lever Hole No.</th>
<th>Throttle Lever Hole No.</th>
<th>Red Spring</th>
<th>Alignment Hole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 3000 RPM</td>
<td>2/Single Hole</td>
<td>2</td>
<td>X</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Less than 3000 RPM</td>
<td>2/Single Hole</td>
<td>2</td>
<td>X</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>
Section 6
Lubrication System

Oil Recommendations
Using the proper type and weight of oil in the crankcase is extremely important. So is checking oil daily and changing oil regularly. Failure to use the correct oil, or using dirty oil, causes premature engine wear and failure.

Oil Type
Use high-quality detergent oil of API (American Petroleum Institute) service class SJ or higher. Select the viscosity based on the air temperature at the time of operation as shown in the following table.

<table>
<thead>
<tr>
<th>RECOMMENDED SAE VISCOSITY GRDES</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAE 10W-30</td>
</tr>
<tr>
<td>API SERVICE SJ</td>
</tr>
<tr>
<td>5W-20, 5W-30</td>
</tr>
<tr>
<td>Kehler 10W-30</td>
</tr>
</tbody>
</table>

NOTE: Using other than service class SG, SH, SJ or higher oil or extending oil change intervals longer than recommended can cause engine damage.

NOTE: Synthetic oils meeting the listed classifications may be used with oil changes performed at the recommended intervals. However to allow piston rings to properly seat, a new or rebuilt engine should be operated for at least 50 hours using standard petroleum based oil before switching to synthetic oil.

A logo or symbol on oil containers identifies the API service class and SAE viscosity grade. See Figure 6-2.

Check Oil Level
The importance of checking and maintaining the proper oil level in the crankcase cannot be overemphasized. Check oil BEFORE EACH USE as follows:

1. Make sure the engine is stopped, level, and is cool so the oil has had time to drain into the sump.
2. To keep dirt, grass clippings, etc., out of the engine, clean the area around the oil fill cap/dipstick before removing it.
3. Remove the oil fill cap/dipstick; wipe oil off. See Figure 6-3. Reinsert the dipstick into the tube and fully seat the dipstick in the tube. See Figure 6-4.
Section 6
Lubrication System

4. Remove the dipstick and check the oil level. The oil level should be up to, but not over the “F” mark on the dipstick. See Figure 6-5.

5. If the level is low, add oil of the proper type, up to the “F” mark on the dipstick. Always check the level with the dipstick before adding more oil.

NOTE: To prevent extensive engine wear or damage, always maintain the proper oil level in the crankcase. Never operate the engine with the oil level below the “L” mark or over the “F” mark on the dipstick.

Change Oil and Oil Filter
Change the oil and oil filter annually or every 100 hours of operation. Change the oil and oil filter while the engine is still warm. The oil will flow more freely and carry away more impurities. Make sure the engine is level when filling or checking oil. Change the oil and filter as follows (see Figure 6-6). Always use a genuine Kohler oil filter.

1. To keep dirt, grass clipping, etc., out of the engine, clean the area around the oil fill cap/dipstick before removing it.

2. Remove the drain plug and oil fill cap/dipstick. Be sure to allow ample time for complete drainage.

3. Remove the old filter and wipe off the mounting pad.

4. Reinstall the oil drain plug and torque to 14 N·m (125 in. lb.).

5. Place the new replacement filter in a shallow pan with the open end up. Pour new oil of the proper type, in through the threaded center hole. Stop pouring when the oil reaches the bottom of the threads. Allow a minute or two for the oil to be absorbed by the filter material.

6. Apply a thin film of clean oil to the rubber gasket on the new filter.

7. Install the new oil filter to the filter adapter or oil cooler. Refer to instructions on the oil filter for proper installation.

8. Fill the crankcase with new oil of the proper type, to the “F” mark on the dipstick.

9. Reinstall the oil fill cap/dipstick and push firmly into place.

10. Test run the engine to check for leaks. Stop the engine, allow a minute for the oil to drain down, and recheck the level on the dipstick. Add more oil, as necessary, so the oil level is up to but not over the “F” mark.
NOTE: To prevent extensive engine wear or damage, always maintain the proper oil level in the crankcase. Never operate the engine with the oil level below the “L” mark or over the “F” mark on the dipstick.

Full-Pressure Lubrication System

Operation
This engine uses a full-pressure lubrication system to deliver oil for internal lubrication. A cam driven, high efficiency Gerotor oil pump located in the crankcase maintains proper oil flow and oil pressure even at low speeds and high operating temperatures. Oil is supplied from the pump via two circuits to the crankshaft main bearings, crankshaft, connecting rod bearing surfaces, cam gears, and axis shafts. An integral pressure relief valve within the oil pump limits the maximum pressure of the system.

For a cold engine at start up, the oil pressure can go up to 20-25 psi. For a warm (normal operating temperature) engine at idle speed, the oil pressure can go down to 5 psi.

Service
The oil pump rotors typically require no servicing, if normal maintenance is performed as outlined in Section 1.

The closure plate must be removed for access to the oil pump and the rotors. Refer to the Disassembly and Reassembly, Sections (8 and 10), for removal and reinstallation procedures.

Oil Filter
These engines are equipped with a full-flow oil filter. See Figure 6-8.

The oil filter helps remove sludge and other combustion by-products from the oil. It also extends the oil change interval and cools the oil.

Figure 6-8. Oil Filter Location.

Oil Sentry
Some engines are equipped with an optional Oil Sentry switch. This switch is designed to prevent the engine from starting in a low oil or no oil condition. The Oil Sentry may not shut down a running engine before damage occurs. In some applications this switch may activate a warning signal. Read your equipment manuals for more information.

Operation
The pressure switch is designed to break contact as the oil pressure increases and make contact as the oil pressure decreases. At oil pressure above approximately 2 to 5 psi, the switch contacts open. At oil pressures below approximately 2 to 5 psi, the switch contacts close.

On vehicular applications (lawn tractors, mowers, etc.), the pressure switch can be used to activate a low oil warning light. On stationary or unattended applications, the pressure switch can be used to ground the ignition module to stop the engine.

NOTE: Oil Sentry is not a substitute for checking the oil level BEFORE EACH USE. Make sure the oil level is maintained up to the “F” mark on the dipstick. See Figure 6-5.
Installation
The pressure switch is installed into the center oil
galley of the filter adapter casting on the closure plate.
Based on the application an elbow adapter may also
be used. See Figure 6-9. On engines not equipped with
Oil Sentry™, the oil galley is sealed with a 1/8” pipe
plug or completely sealed.

To install the Oil Sentry™ switch:

1. Remove and discard the pipe plug from the
center passage of oil filter mounting pad.

2. Apply pipe sealant with Teflon® (Loctite® No.
59241 or equivalent) to the threads of the 90°
adapter (if used), and the Oil Sentry™ switch.

3. Install the adapter (if used), and carefully tighten
it to the intended position. Do not over tighten or
damage the adapter.

4. Install the switch into the adapter or center
passage. Torque the switch to 4.5-5.0 N·m
(40-45 in. lb.).

5. Connect the lead to the terminal on the Oil
Sentry™ switch.

Testing the Oil Sentry™ Switch
The Oil Sentry™ pressure monitor is a normally closed
switch. It is calibrated to open (break contact) with
increasing pressure and close (make contact) with
decreasing pressure within the range of 2.0/5.0 psi.

Compressed air, a pressure regulator, pressure gauge,
and a continuity tester are required to test the switch.

1. Connect the continuity tester across the blade
terminal and the metal case of the switch. With
0 psi pressure applied to the switch, the tester
should indicate continuity (switch closed).

2. Gradually increase the pressure to the switch. The
tester should indicate a change to no continuity
(switch open) as the pressure increases through
the range of 2.0/5.0 psi.

The switch should remain open as the pressure is
increased to 90 psi maximum.

3. Gradually decrease the pressure to the switch.
The tester should indicate a change to continuity
(switch closed) as the pressure decreases through
the range of 2.0/5.0 psi; approaching 0 psi.

If the switch does not operate as specified,
replace the switch.

Testing Oil Pressure
On some models the engine oil pressure can be tested
using an oil pressure tester. Follow the instructions
included with the tester. The pressure can be tested by
removing the oil filter and installing the tester adapter
on the mounting pad, or by removing the Oil Sentry™
pressure switch (or pipe plug) and threading the tester
hose directly into the mounting hole. See Figure 6-10.
Section 7
Electrical System and Components

This section covers the operation, service, and repair of the electrical system and electrical system components.

Major electrical systems and components covered in this section include the ignition system, battery, battery charging systems, electric starter, and optional Oil Sentry™ oil level pressure switch.

⚠️ **WARNING: Electrical Shock**

*Never touch electrical wires or components while the engine is running. They can be sources of electrical shock.*

**Spark Plug**

Engine misfire or starting problems are often caused by a spark plug that is in poor condition or has an improper gap setting.

The engine is equipped with the following spark plug:

- **Type:** Champion® RC12YC or QC12YC (RFI Compliant)
- **Gap:** 0.76 mm (0.030 in.)
- **Thread Size:** 14 mm
- **Reach:** 19.1 mm (3/4 in.)
- **Hex Size:** 15.9 mm (5/8 in.)

**Spark Plug Service**

*Annually or every 100 hours* of operation, remove the spark plug. Check its condition, and reset the gap or replace with a new plug as necessary. Spark plug replacement is recommended at *500 hours.*

1. Before removing the spark plug, clean the area around the base of the plug to keep dirt and debris out of the engine. Due to the deep recess around the spark plug, blowing out the cavity with compressed air is usually the most effective method for cleaning. The spark plug is most accessible when the blower housing is removed for cleaning.

2. Remove the plug and check its condition. Replace the plug if worn or reuse is questionable.

3. Check the gap using a wire feeler gauge. Adjust the gap by carefully bending the ground electrode. Gap plugs to 0.76 mm (0.030 in.). See Figure 7-1.

4. Reinstall the spark plug into the cylinder head. Torque the spark plug to 24-30 N·m (18-22 ft. lb.).

5. Reconnect the spark plug lead and reinstall the blower housing, if removed previously. Torque the blower housing screws to 7.7 N·m (68.3 in. lb.).

![Figure 7-1. Servicing Spark Plug.](image-url)
Section 7
Electrical System and Components

Inspection
Inspect the spark plug as soon as it is removed from the cylinder head. The deposits on the tip are an indication of the general condition of the piston rings, valves, and carburetor.

Normal: A plug taken from an engine operating under normal conditions will have light tan or gray colored deposits. If the center electrode is not worn, a plug in this condition could be regapped and reused.

Worn: On a worn plug, the center electrode will be rounded and the gap will be eroded .010” or more than the correct gap. Replace a worn spark plug immediately.

Chalky White Deposits: Chalky white colored deposits indicate overheating. This condition is usually accompanied by excessive gap erosion. A clogged grass screen, clogged cooling fins, and lean carburetion are some causes of overheating.

Carbon Fouled: Soft, sooty, black deposits indicate incomplete combustion. Incomplete combustion is usually caused by over-rich carburetion, weak ignition, or poor compression.

Wet Fouled: A wet plug is caused by excess fuel, or oil in the combustion chamber. Excess fuel could be caused by operating the engine with too much choke or a dirty air filter. Oil in the combustion chamber is usually caused by worn piston rings or valve guides.

Normal and fouled plugs are shown in the following photos.
These engines are equipped with a dependable electronic, capacitive discharge (CD) ignition system. The system consists of the following components:

- A magnet assembly which is permanently affixed to the flywheel.
- An electronic, capacitive discharge ignition module which mounts on the engine crankcase.
- A spark plug.
- A kill switch (or key switch), which grounds the module to stop the engine.
Section 7
Electrical System and Components

Operation
As the flywheel rotates, and the magnet passes the ignition module, the magnetic field induces current in the input coil (L1). The current pulse is rectified by a diode (D1) and charges a high-voltage capacitor (C1). As the magnet completes its pass, it induces current in a small triggering coil (L2), which turns on the semiconductor switch (SCS). With the switch on, the charged capacitor is directly connected to the primary winding (P) of the transformer (T1). As the capacitor discharges through the primary, the current initiates a fast-rising flux field in the transformer core. The flux field induces a high voltage in the secondary winding (S) of the transformer. The high voltage pulse is delivered to the spark plug, where it arcs across the electrode gap and ignites the fuel-air mixture in the combustion chamber.

NOTE: The CD ignition systems are sensitive to excessive load on the kill lead. Customer complaints of hard starting, low power, or misfire under load may be due to excessive draw on the kill circuit. Disconnect any auxiliary kill wires or safety switches connected to the kill circuit and operate the engine to determine if the reported problem is gone.

Troubleshooting and Testing CD Ignition Systems
The CD ignition system is designed to be trouble free for the life of the engine. Other than periodically checking/replacing the spark plug, no maintenance or timing adjustment is necessary or possible. The ignition module automatically controls the timing of the spark. Mechanical systems do occasionally fail or break down, however, so the following troubleshooting information is provided to help systematically determine the cause of a reported problem.

Reported ignition problems are most often due to poor or loose connections. Before beginning the test procedure check all external wiring, including ground leads for wiring harness and rectifier-regulator (if so equipped). Be certain all ignition-related wires are connected, including the spark plug lead, and all terminal connections fit snugly. Make sure the ignition switch is in the run position.

Trouble Test
To be certain the reported problem is in the engine ignition system, it should be isolated from the unit, as follows.

1. Locate the plug connectors where the wiring harnesses from the engine and unit are joined. Separate the connectors and separate the white kill lead from the engine connector. Rejoin the connectors and position or insulate the kill lead terminal, so it cannot touch ground. Try to start the engine to verify whether the reported problem is still present.
   a. If the problem is gone, the electrical system on the unit is suspect. Check the key switch, wires, connections, safety interlocks, etc.
   b. If the problem persists, continue with the following troubleshooting procedure. Leave the kill lead isolated until all testing is completed.
CD Ignition System Troubleshooting Guide
The following guide will help locate and correct ignition system problems.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Test</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Make sure the spark plug lead is connected to the spark plug.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Check the condition of spark plug. Make sure gap is set to 0.76 mm (0.030 in.).</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>a. Test for spark with ignition tester (See Section 2). Disconnect spark plug lead and connect it to the post terminal of the tester. See Figure 7-4. Connect the clip to a good ground, not the spark plug.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Make sure the engine ignition switch, kill switch, or key switch is in the “run” position.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. Crank the engine (minimum speed 500 RPM), and observe the tester. Visible and audible sparks should be produced.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Measure the resistance of module secondary using an ohmmeter (see Figures 7-2 and 7-5): Zero ohmmeter before testing. Connect one ohmmeter lead to laminations (A). Connect the other lead to the spark plug terminal (C) of high-tension lead. With the ohmmeter leads connected in this manner, the resistance of secondary should be from 7,900 to 18,400 ohms.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOTE: This test cannot be performed unless module has been fired at least once.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>If plug is in good condition, check/adjust gap and reinstall.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>If visible and audible sparks are produced, the ignition module is OK.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If visible and audible sparks are not produced:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Make sure the engine ignition switch, kill switch, or key switch is in the “run” position.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b. Check wires and terminals of ignition module and other components for accidental grounding and damaged insulation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>c. If wires and terminals are OK, the ignition module is probably faulty and should be replaced. Test module further using an ohmmeter (Test 4).</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>If the resistance is low or 0 ohms, the module secondary is shorted. Replace the module.*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If the resistance is high or infinity ohms, the module secondary is open. Replace the module.*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If the resistance is within the specified range, the module secondary is OK.</td>
<td></td>
</tr>
</tbody>
</table>

*Refer to the Disassembly and Reassembly Sections for complete ignition module removal and installation procedures.

Figure 7-4. Ignition Tester (See Section 2).
Figure 7-5. Testing CD Ignition Module Secondary.
Section 7
Electrical System and Components

Battery
A 12 volt battery with a minimum current rating of 250 cold cranking amps is recommended. The actual cold cranking amp requirement depends on engine size, application and starting temperatures. As temperatures decrease, cranking requirements increase but battery capacity shrinks. Refer to the operating instructions of the equipment this engine powers for specific battery requirements.

If the battery charge is not sufficient to crank the engine, recharge the battery. Do not jump start using another battery.

Battery Charging

WARNING: Explosive Gases!
Batteries produce explosive hydrogen gas while being charged. To prevent a fire or explosion, charge batteries only in well ventilated areas. Keep sparks, open flames, and other sources of ignition away from the battery at all times. Keep batteries out of the reach of children. Remove all jewelry when servicing batteries.

Before disconnecting the negative (-) ground cable, make sure all switches are OFF. If ON, a spark will occur at the ground cable terminal, which could cause an explosion if hydrogen gas or gasoline vapors are present.

Battery Maintenance
Regular maintenance will ensure the battery will accept and hold a charge.

1. Regularly check the level of electrolyte. Add distilled water as necessary to maintain the recommended level.

   NOTE: Do not overfill the battery. Poor performance or early failure due to loss of electrolyte will result.

2. Keep the cables, terminals, and external surfaces of the battery clean. A build-up of corrosive acid or grime on the external surfaces can self-discharge the battery. Self-discharging happens rapidly when moisture is present.

3. Wash the cables, terminals, and external surfaces with a baking soda and water solution. Rinse thoroughly with clear water.

   NOTE: Do not allow the baking soda solution to enter the cells of the battery, as this will destroy the electrolyte.

Battery Test
Test the battery voltage by connecting a DC voltmeter across the battery terminals and cranking the engine. If the battery drops below 9 volts while cranking, the battery is discharged or faulty. Refer to Figure 7-6.

Figure 7-6. Checking Battery Voltage.

Electrical Systems Wiring Diagrams and Battery Charging Systems
Most engines are equipped with either a 9 or 15 amp, regulated battery charging system. Some have a 3 amp, regulated system with a 70 watt lighting circuit.

Refer to the following wiring diagrams and troubleshooting guides to test and service the system.

NOTE: Observe the following guidelines to prevent damage to the electrical system and components.

1. Make sure the battery polarity is correct. A negative (-) ground system is used.

2. Disconnect the battery cables (negative (-) cable first), before doing electric welding on the equipment powered by the engine.

3. Prevent the stator leads from touching or shorting while the engine is running. This could damage the stator.
Figure 7-7. 3 Amp/70 Watt Stator.

Figure 7-8. 3 amp Regulated Battery Charging System/70 Watt Lighting.
# Troubleshooting Guide 3 Amp Battery Charging System With 70 Watt Lighting Stator

**NOTE:** Zero ohmmeteres on each scale to ensure accurate readings. Voltage tests should be made with engine running at full throttle - no load. Battery must be fully charged.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Test</th>
<th>Conclusion</th>
</tr>
</thead>
</table>
| **No Charge To Battery** | 1. With engine running in the fast setting, measure voltage across battery terminals using a DC voltmeter. | 1. If voltage is **more than 12.5 volts**, charging system is OK.  
If voltage is **12.5 volts or less**, the stator or diode are probably faulty. Test the stator and diode (Test 2, 3, and 4). |
| 2. Remove connector from rectifier-regulator. With engine running in the fast position, measure AC voltage across stator leads using an AC voltmeter. | 2. If voltage is **20 volts or more**, stator winding is OK.  
If voltage is **less than 20 volts**, test stator using an ohmmeter (Tests 3 and 4). |
| 3. With charging lead disconnected from battery and engine stopped, measure resistance from charging lead to ground using an ohmmeter. Note reading. Reverse the leads and measure resistance again. In one direction, the resistance should be infinity ohms (open circuit). With the leads reversed, some resistance should be measured (about midscale on Rx1 range). | 3. If resistance is **low** in both directions, the diode is shorted. Replace the diode.  
If resistance is **high** in both directions, the diode or stator winding is open. (Use Test 4). |
| 4. Cut the sleeving on the charging lead to expose the diode connections. Measure the resistance from the stator side of diode to ground using an ohmmeter. | 4. If resistance is approximately **0.5 ohms**, stator winding is OK, diode is open. Replace diode.  
If resistance is **0 ohms**, stator winding is shorted. Replace stator.  
If resistance is **infinity ohms**, stator winding or lead is open. Replace stator. |
| **No Lights** | 1. Make sure lights are not burned out. | 1. Replace burned out lights. |
| 2. Disconnect the lighting lead from the wiring harness. With engine running at the fast setting, measure voltage from lighting lead to ground using an AC voltmeter. | 2. If voltage is **13 volts or more**, stator is OK.  
Check for loose connections or shorts in wiring harness.  
If voltage is **less than 13 volts**, test stator using an ohmmeter (Test 3). |
| 3. With engine stopped, measure the resistance of stator from lighting lead to ground using an ohmmeter. | 3. If resistance is approximately **0.2 ohms**, stator is OK.  
If resistance is **0 ohms**, stator is shorted. Replace stator.  
If resistance is **infinity ohms**, stator or lighting lead is open. Replace stator. |
# Electrical System and Components

## Troubleshooting Guide 3 Amp/70 Watt Braking Stator

**NOTE:** Zero ohmmeteres on each scale to ensure accurate readings. Voltage tests should be made with engine running at full throttle - no load. Battery must be fully charged.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Test</th>
<th>Conclusion</th>
</tr>
</thead>
</table>
| 1. With engine running in the fast setting, measure voltage across battery terminals using a DC voltmeter. | 1. If voltage is **more than 12.5 volts**, charging system is OK.  
If voltage is **12.5 volts or less**, the stator or diode are probably faulty. Test the stator and diode (Test 2, 3, and 4). |  |
| 2. Remove connector from rectifier-regulator. With engine running in the fast position, measure AC voltage across stator leads using an AC voltmeter. | 2. If voltage is **5 volts or more**, stator winding is OK.  
If voltage is **less than 5 volts**, test stator using an ohmmeter (Tests 3 and 4). |  |
| 3. With charging lead disconnected from battery and engine stopped, measure resistance from charging lead to ground using an ohmmeter. Note reading. Reverse the leads and measure resistance again. In one direction, the resistance should be infinity ohms (open circuit). With the leads reversed, some resistance should be measured (about midscale on Rx1 range). | 3. If resistance is **low** in both directions, the diode is shorted. Replace the diode.  
If resistance is **high** in both directions, the diode or stator winding is open. (Use Test 4.) |  |
| 4. Disconnect the lighting lead (yellow) from the wiring harness. Measure the resistance from the lighting lead to ground using an ohmmeter. | 4. If resistance is approximately **0.15 ohms**, stator winding is OK, diode is open. Replace diode.  
If resistance is **0 ohms**, stator winding is shorted. Replace stator.  
If resistance is **infinity ohms**, stator winding or lead is open. Replace stator. |  |
| 1. Make sure lights are not burned out.  
2. Disconnect the lighting lead (yellow) from the wiring harness. With engine running in the fast setting, measure voltage from lighting lead to ground using an AC voltmeter. | 1. Replace burned out lights.  
2. If voltage is **13 volts or more**, stator is OK. Check for loose connections or shorts in wiring harness.  
If voltage is **less than 13 volts**, test stator using an ohmmeter (Test 3). |  |
| 3. With engine stopped, measure the resistance of stator from lighting lead to ground using an ohmmeter. | 3. If resistance is approximately **0.15 ohms**, stator is OK.  
If resistance is **0 ohms**, stator is shorted. Replace stator.  
If resistance is **infinity ohms**, stator or lighting lead is open. Replace stator. |  |
## No Lights Or Battery Charging (Braking System Test)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Test</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Make sure lights are not burned out.</td>
<td>1. Replace burned out lights.</td>
<td></td>
</tr>
<tr>
<td>2. Disconnect the braking lead (green) from the wiring harness. With engine running in the fast setting, measure voltage from braking lead to ground using an AC voltmeter.</td>
<td>2. If voltage is \textbf{35 volts or more}, stator is OK. Circuitry on unit that grounds braking lead is shorted. If voltage is \textbf{less than 35 volts}, test stator using an ohmmeter (Test 3).</td>
<td></td>
</tr>
<tr>
<td>3. With the engine stopped, measure the resistance from braking lead to ground using an ohmmeter.</td>
<td>3. If resistance is approximately \textbf{0.2-0.4 ohms}, stator is OK. If resistance is \textbf{0 ohms}, stator is shorted. Replace stator. If resistance is \textbf{infinity ohms}, stator or lighting lead is open. Replace stator.</td>
<td></td>
</tr>
</tbody>
</table>
Figure 7-9. Regulated Battery Charging System, 9 or 15 amp.
Section 7
Electrical System and Components

Figure 7-10. 9 or 15 amp Stator and Rectifier-Regulator.

Figure 7-11. Proper Connection to Test 9 or 15 amp Charging System.
## Troubleshooting Guide 9 or 15 amp Regulated Battery Charging System

Note: Zero ohmmeters on each scale to ensure accurate readings. Voltage tests should be made with engine running at full throttle - no load. The battery must be fully charged.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Test</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>No Charge To Battery</strong></td>
<td>1. Trace B+ lead from rectifier-regulator to key switch, or other accessible connection. Disconnect it from switch or connection. Connect an ammeter from loose end of B+ lead to positive terminal of battery. Connect DC voltmeter from loose end of B+ lead to negative terminal of battery. See Figure 7-11. With engine running in the fast position, read voltage on voltmeter. If voltage is 13.8 volts or more, place a minimum load of 5 amps* on battery to reduce voltage. Observe ammeter. <strong>NOTE:</strong> Turn on lights, if 60 watts or more. Or place a 2.5 ohm, 100 watt resistor across battery terminals.</td>
<td>1. If voltage is 13.8-14.7 and charge rate increases when load is applied, the charging system is OK and battery was fully charged. If voltage is less than 13.8 or charge rate does not increase when load is applied, test stator (Tests 2 and 3).</td>
</tr>
<tr>
<td></td>
<td>2. Remove connector from rectifier-regulator. With engine running in the fast position, measure AC voltage across stator leads using an AC voltmeter.</td>
<td>2. If voltage is <strong>28 volts or more</strong>, stator is OK. Rectifier-regulator is probably faulty. Verify with Rectifier-regulator tester KO3221. If voltage is <strong>less than 28 volts</strong>, stator is probably faulty and should be replaced. Test stator further using an ohmmeter (Test 3).</td>
</tr>
<tr>
<td></td>
<td>3a. With engine stopped, measure the resistance across stator leads using an ohmmeter.</td>
<td>3a. If resistance is <strong>0.1/0.2 ohms</strong>, the stator is OK. If the resistance is <strong>infinity ohms</strong>, stator is open. Replace stator.</td>
</tr>
<tr>
<td></td>
<td>3b. With the engine stopped, measure the resistance from each stator lead to ground using an ohmmeter.</td>
<td>3b. If the resistance is <strong>infinity ohms</strong> (no continuity), the stator is OK (not shorted to ground). If resistance (or continuity) is measured, the stator is shorted to ground. Replace stator.</td>
</tr>
<tr>
<td><strong>Battery Continuously Charges At High Rate</strong></td>
<td>1. Perform same test as step 1 above.</td>
<td>1. If the voltage is <strong>14.7 volts or less</strong>, the charging system is OK. The battery is unable to hold a charge. Service battery or replace as necessary. If voltage is <strong>more than 14.7 volts</strong>, the rectifier-regulator is faulty. Replace rectifier-regulator.</td>
</tr>
</tbody>
</table>
Blade Stop Stator Brake Circuit
The blade stop stator brake circuit is provided as a safety feature to ensure the application can meet ANSI (American National Standards Institute) application blade stop requirements.

The circuit is activated if the operator gets off of the seat of the application while mower blade system is activated or in certain reverse mow conditions.

The circuit is activated by taking the ignition shutdown (kill) lead to ground. This action turns on the stator-brake relay which shorts the charging AC stator leads to produce a magnetic field that will counter or resist the rotation of the flywheel. This added resistance to rotation decreases the amount of time it takes for the application deck blades to come to a full stop.

As the Kohler blade stop stator brake circuit often is operated in conjunction with other application circuits, the relay in the Kohler circuit is specially configured with a 680 ohm resistor in parallel with the relay coil. This is done to negate transient voltage signals that would be normally created by interrupting the relay current once the relay has been activated. Therefore, relay replacement must only be made with the properly identified relay.

Figure 7-12. Blade Stop Stator Brake Circuit Wiring Diagram.
Troubleshooting Stator Brake System

Problems that could occur with the Kohler portion circuit generally could be caused by two component failures or an incorrect relay replacement, which will create the following conditions:

Dead Battery
The brake relay has failed and is keeping the stator shorted, so no charge current can be passed from the rectifier-regulator to the battery, eventually allowing the battery to discharge.

Test
Check battery voltage using a test meter with the application off and then while the application is operating at maximum speed. The battery voltage should increase from the engine off condition to the engine full speed condition.

If it does not, shut down the engine, remove the relay from its socket and re-test at full engine speed.

If the battery voltage does not increase with the engine operating, the problem is likely not with the stator brake relay.

Perform other test associated with the charging stator and rectifier-regulator to further determine root cause.

Engine will crank but will not start
The brake stator relay is interacting with the application safeties or the reverse mow electronics, preventing normal engine start up.

Test
Remove the brake relay from its socket and attempt to restart the engine. If the engine starts, it is likely that the relay is not correct for this application or the transient protection resistor has failed. Replace the relay with the correct component.

If the engine does not start, the problem may exist with the application reverse mow circuit, the application safeties or with the key switch keeping the ignition shutdown line tied to engine ground.

Remove the engine shutdown (kill) lead from the application wire harness and attempt to start the engine again.

If the engine still does not start, you may have a fuel or ignition problem.
Electric Starters
These engines use inertia drive starting motors.

Operation
When power is applied to the starter, the armature rotates. As the armature rotates, the drive pinion moves out on the splined drive shaft and into mesh with the flywheel ring gear. When the pinion reaches the end of the drive shaft, it rotates the flywheel and cranks the engine.

When the engine starts, the flywheel rotates faster than the starter armature and drive pinion. This moves the drive pinion out of mesh with the ring gear and into the retracted position. When power is removed from the starter, the armature stops rotating and the drive pinion is held in the retracted position by the anti-drift spring.

Starting Motor Precautions
NOTE: Do not crank the engine continuously for more than 10 seconds at a time. If the engine does not start, allow a 60-second cool-down period between starting attempts. Failure to follow these guidelines can burn out the starter motor.

NOTE: If the engine develops sufficient speed to disengage the inertia drive starter but does not keep running (a false start), the engine rotation must be allowed to come to a complete stop before attempting to restart the engine. If the starter is engaged while the flywheel is rotating, the starter pinion and flywheel ring gear may clash, resulting in damage to the starter.

NOTE: If the starter does not crank the engine, shut off the starter immediately. Do not make further attempts to start the engine until the condition is corrected.

NOTE: Do not drop the starter or strike the starter frame or end cap. Doing so can damage the starter.

Troubleshooting Guide - Starting Difficulties

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Fault</th>
<th>Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Starter Does Not Energize</strong></td>
<td>Battery</td>
<td>1. Check the specific gravity of battery. If low, recharge or replace battery as necessary.</td>
</tr>
<tr>
<td></td>
<td>Wiring</td>
<td>1. Clean corroded connections and tighten loose connections.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Replace wires in poor condition.</td>
</tr>
<tr>
<td></td>
<td>Starter Switch</td>
<td>1. Bypass the switch or solenoid with a jumper wire. If starter cranks normally, replace the faulty components.</td>
</tr>
<tr>
<td>or Solenoid</td>
<td>Battery</td>
<td>1. Check the specific gravity of battery. If low, recharge or replace battery as necessary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Battery too small, must be at least 250 cold-cranking amps.</td>
</tr>
<tr>
<td></td>
<td>Brushes</td>
<td>1. Check for excessively dirty or worn brushes and commutator. Clean commutator using a coarse cloth (not emery cloth).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Replace brushes if excessively or unevenly worn.</td>
</tr>
<tr>
<td><strong>Starter Energizes But Turns Slowly</strong></td>
<td>Transmission</td>
<td>1. Make sure the clutch or transmission is disengaged or placed in neutral. This is especially important on equipment with hydrostatic drive. The transmission must be exactly in neutral to prevent resistance which could keep the engine from starting.</td>
</tr>
<tr>
<td></td>
<td>Engine</td>
<td>2. Check for seized engine components such as the bearings, connecting rod, and piston.</td>
</tr>
</tbody>
</table>
Starter Removal and Installation
Refer to the Disassembly and Reassembly Sections for starter removal and installation procedures.

Starter Drive Service
Every 500 hours of operation, clean and lubricate the splines on the starter drive shaft. If the drive pinion is worn, or has chipped or broken teeth, it must be replaced. See Figure 7-14.

It is not necessary to completely disassemble the starter to service the drive components.

1. Disassemble the retaining ring, use tool (See Section 2).

2. Referring to Figure 7-14, grasp the spring retainer and push it toward the starter, compressing the anti-drift spring and exposing the retaining ring.

3. Holding the spring retainer in the retracted position, assemble the inner halves of the removal tool around the armature shaft with the retaining ring in the inner groove (see Figure 7-15). Slide the collar over the inner halves to hold them in position.

4. Thread the center screw into the removal tool until you feel resistance. Use a wrench (1 1/8” or adjustable) to hold the base of the removal tool. Use another wrench or socket (1/2” or 13 mm) to turn the center screw clockwise (see Figure 7-16). The resistance against the center screw will tell you when the retaining ring has popped out of the groove in the armature shaft.

5. Remove the drive components, and drive nut (collar) from the armature shaft, paying attention to the sequence. If the splines are dirty, clean them with solvent.

6. The splines should have a light film of lubricant. Relubricate as necessary with Kohler bendix starter lubricant (See Section 2). Reinstall or replace the drive components, assembling them in the same sequence as they were removed.
Retaining Ring Installation
1. Position the retaining ring in the groove in one of the inner halves. Assemble the other half over the top and slide on the outer collar.

2. Be certain the drive components are installed in correct sequence onto the armature shaft.

3. Slip the tool over the end of the armature shaft, so the retaining ring inside is resting on the end of the shaft. Hold the tool with one hand, exerting slight pressure toward the starter. Tap the top of the tool with a hammer until you feel the retaining ring snap into the groove. Disassemble and remove the tool.

4. Squeeze the retaining ring with pliers to compress it into the groove.

5. Assemble the inner halves with the larger cavity around the spring retainer (see Figure 7-17). Slide the collar over them and thread the center screw in until resistance is felt.

6. Hold the base of the tool with a 1 1/8" wrench and turn the center screw clockwise with a 1/2" or 13 mm wrench to draw the spring retainer up around the retaining ring. Stop turning when the resistance increases. Disassemble and remove the tool.

Starter Disassembly
1. Remove the drive components following the instructions for servicing the drive.

2. Remove the hex flange nut and insulating washer from the positive (+) brush lead stud.

3. Remove the thru bolts and recessed hex nuts.

4. Remove the commutator end cap and lift out the brush carrier assembly with the brushes and springs.

5. Remove the drive end cap, then pull the armature with the thrust washer and wave washer (as equipped) out of the starter frame.

Figure 7-17. Assembling Larger Inner Half Around Spring Retainer.

Figure 7-18. Inertia Drive Electric Starter.
Brush Replacement
1. Remove the hex flange nut and insulating washer from the positive (+) brush lead stud.

2. Remove the thru bolts and captured hex nuts.

3. Remove the commutator end cap, then pull the brush carrier assembly out of the frame. See Figure 7-19.

Commutator Service
Clean the commutator with a coarse, lint free cloth. Do not use emery cloth.

If the commutator is badly worn or grooved, turn it down on a lathe or replace the armature.

Starter Reassembly
1. Place the wave washer, followed by the thrust washer onto the drive shaft of the armature. See Figure 7-20.

2. Insert the armature into the starter frame. The magnets will hold it in place. See Figure 7-21.

3. Align the holes with the spaces between the magnets and install the drive end cap onto the front of the frame.

4. If the brush assembly is not being replaced, position the springs and brushes within their pockets in the carrier; move them to the retracted position, and install carton staples to retain them. See Figure 7-22. Replacement brushes come pre-assembled in the carrier housing, retained with two carton staples.
Section 7
Electrical System and Components

5. Hold the brush holder assembly with the positive brush lead stud up. Align the molded sections with the corresponding cutouts in the starter frame and slide the brush carrier assembly into place. The commutator will push the carton staples out as the brush assembly is inserted. See Figure 7-23.

6. Position the commutator end cap over the brush assembly, aligning the holes for the stud terminal and the thru bolts.

7. Install the thru bolts and hex nuts. Torque to 3.3-3.9 N·m (30-35 in. lb.). See Figure 7-24.

8. Install the insulating washer and hex flange nut onto the positive (+) brush lead stud. Make sure the stud is centered and does not touch the metal end cap. Torque the hex flange nut to 2.2-4.5 N·m (20-40 in. lb.).

NOTE: After installation and connection of the starter lead, torque the outer nut to 1.6-2.8 N·m (12-25 in. lb.), do not over torque.

9. Lubricate the drive shaft with Kohler bendix starter drive lubricant (See Section 2). Install the drive components following the instructions for servicing the drive. The completed starter is shown in Figure 7-25.
WARNING: Accidental Starts!

_Disabling engine. Accidental starting can cause severe injury or death._ Before working on the engine or equipment, disable the engine as follows: 1) Disconnect the spark plug lead. 2) Disconnect negative (-) battery cable from battery.

The following sequence is suggested for complete engine disassembly. This procedure can be varied to accommodate options or special equipment.

Clean all parts thoroughly as the engine is disassembled. Only clean parts can be accurately inspected and gauged for wear or damage. There are many commercially available cleaners that will quickly remove grease, oil, and grime from engine parts. When such a cleaner is used, follow the manufacturer’s instructions and safety precautions carefully.

Make sure all traces of the cleaner are removed before the engine is reassembled and placed into operation. Even small amounts of these cleaners can quickly break down the lubricating properties of engine oil.

**Typical Disassembly Sequence**
1. Drain oil from the crankcase and remove oil filter.
2. Remove blower housing.
3. Disconnect spark plug lead.
4. Remove muffler.
5. Remove rectifier-regulator.
6. Remove electric starter.
7. Remove air cleaner.
8. Remove external governor components, carburetor and fuel pump.
9. Remove ignition module.
10. Remove grass screen, fan, and flywheel.
11. Remove stator.
12. Remove valve cover and cylinder head.
13. Remove closure plate and wiring harness.
14. Remove cam gears, cam shafts, and oil pump.
15. Remove connecting rod and piston.
16. Remove piston from connecting rod.
17. Remove piston rings.
18. Remove crankshaft and balance weight assembly.
19. Remove balance weight assembly from crankshaft.
20. Remove governor cross shaft.
21. Remove PTO and flywheel side oil seals.

**Drain Oil from Crankcase and Remove Oil Filter**
1. Remove the oil drain plug and oil fill cap/dipstick. See Figure 8-1.
2. Allow ample time for the oil to drain from the crankcase.
3. Remove and discard the oil filter.
Section 8
Disassembly

Remove Oil Sentry™ Pressure Switch
(On Models So Equipped)
1. Disconnect the lead from the Oil Sentry™
   pressure switch.

2. Remove the pressure switch from the center
   passage or adapter elbow in the closure plate. See
   Figure 8-2.

Remove Muffler
1. Remove the hex flange nuts or 5/16-18 capscrews
   attaching the muffler or exhaust system to the
   engine. Remove any attached brackets. See Figure
   8-4.

2. Remove the muffler and gasket from the exhaust
   port.

Remove Blower Housing
1. Remove the four shoulder screws securing the
   blower housing to the closure plate. See Figure
   8-3.

2. Lift the blower housing and separate the spark
   plug lead from the corresponding slot.

Remove Rectifier-Regulator
1. Unplug the connector from the rectifier-regulator.

2. Remove the two screws securing the rectifier-
   regulator to the crankcase. Remove the rectifier-
   regulator. See Figure 8-5.

Remove Electric Starter
1. Disconnect the starter lead from the terminal
   stud.

2. Remove the two hex flange nuts securing the
   starter to the closure plate. Remove the starter.
   See Figure 8-6.

Disconnect Spark Plug Lead
1. Carefully pull on the boot section and disconnect
   the spark plug lead.
Remove Air Cleaner

1. Loosen the two knobs and remove the air cleaner cover. See Figure 8-7.

2. Remove the precleaner (if so equipped), and the air cleaner element with the formed rubber seal. See Figure 8-8.

3. Remove the two hex flange nuts, or single nut and long mounting screw securing the air cleaner base. See Figure 8-9.

4. Disconnect the breather hose from the valve cover and remove the air cleaner base and gasket. See Figure 8-10.

Remove External Governor Components, Carburetor, and Fuel Pump

**WARNING: Explosive Fuel!**

Gasoline is extremely flammable and its vapors can explode if ignited. Store gasoline only in approved containers, in well ventilated, unoccupied buildings, away from sparks or flames. Do not fill the fuel tank while the engine is hot or running, since spilled fuel could ignite if it comes in contact with hot parts or sparks from ignition. Do not start the engine near spilled fuel. Never use gasoline as a cleaning agent.
1. Shut off the fuel supply. Disconnect the fuel line from the carburetor inlet fitting. See Figure 8-11. If a fuel pump is used, disconnect the pulse line from the fitting on the closure plate. See Figure 8-12.

2. Remove the heat deflector mounting screw and special washer, which also secures the ground lead for the fuel shut-off solenoid, if so equipped. See Figure 8-13.

3. If the carburetor uses a fuel solenoid, carefully cut the plastic tie strap and disconnect the fuel solenoid lead from the wiring harness. See Figure 8-14.

4. Slide the carburetor outward and disconnect the throttle and choke linkages. See Figure 8-15.
5. Mark the mounted position of the speed control bracket in the slotted holes and remove the two screws securing the speed control bracket to the closure plate. Note or mark the governor spring hole for correct installation later. Unhook the governor spring, then remove the control bracket (with fuel pump attached, if equipped) and linkages from the engine. See Figures 8-16 and 8-17.

6. Loosen the hex flange nut and remove the governor lever* from the governor cross shaft. See Figure 8-18.

7. Remove the carburetor gasket, then carefully remove the heat deflector and gasket from the intake stud. The heat deflector is made from a plastic that is quite brittle. Do not pry on the corners, or you risk cracking/breaking the deflector. If prying is necessary to loosen the deflector, carefully pry near the intake stud only. See Figure 8-19. Remove the mounting stud from the cylinder only if required.

*NOTE: It is recommended that a new governor lever be installed whenever removal is performed.
Section 8
Disassembly

8. Remove the insert from the intake port (some models), if separate from the heat deflector. See Figure 8-20.

![Figure 8-20. Removing Insert (Some Models).](image)

Remove Ignition Module

1. Disconnect the kill lead from the ignition module.

2. Rotate the flywheel magnet away from the module.

3. Remove the RFI sheathed spark plug lead with from retaining clip, if so equipped. See Figure 8-21.

![Figure 8-21. Removing Lead from Clip (RFI Suppression Equipped Units).](image)

4. Remove the two hex flange screws and the ignition module. See Figure 8-22.

![Figure 8-22. Removing Ignition Module.](image)

Remove Grass Screen, Fan, and Flywheel

1. Unsnap the grass screen from the cooling fan. See Figure 8-23.

![Figure 8-23. Removing Grass Screen.](image)

NOTE: Always use a flywheel strap wrench or flywheel holding tool (see Section 2) to hold the flywheel when loosening or tightening the flywheel and fan retaining fasteners. Do not use any type of bar or wedge between the fins of the cooling fan, as the fins could become cracked or damaged.

2. Remove the retaining screw, washer and the fan mounting plate, securing the fan and flywheel to the crankshaft. See Figure 8-24.
Section 8
Disassembly

3. Carefully lift the cooling fan to disengage the two drive pins and remove it from the flywheel.

4. Remove the flywheel from the crankshaft using a puller. See Figure 8-25.

NOTE: Always use a puller to remove the flywheel from the crankshaft. Do not strike the crankshaft or flywheel, as they could be cracked or damaged.

5. Remove the flywheel key from the crank shaft.

Remove the Stator
1. Remove the two screws securing the stator to the closure plate bosses. See Figure 8-26.

NOTE: To disconnect the B+ or stator leads from the wiring harness connector, insert a small screwdriver, or similar narrow flat blade, and bend down the locking tang of the terminal(s). Gently pull the lead(s) out of the connector.

Remove the Valve Cover and Cylinder Head
1. Remove the seven screws securing the valve cover and any attached brackets. See Figure 8-27.

2. Remove the valve cover and gasket from the cylinder head. See Figure 8-28.
3. Loosen the inner set screws (T15 TORX) and back off the rocker arm adjusting nuts. Remove the push rods and mark them, so they can be reinstalled in the same location. See Figure 8-29.

4. Remove the six hex flange screws securing the cylinder head. Note the thick washer used on the screw closest to the exhaust port. See Figure 8-30.

5. Remove the cylinder head and head gasket. See Figure 8-31.

6. Remove the drain back check ball (some models) from the keyhole slot in the crankcase. See Figure 8-32. Models without a check ball have an internal drain back tube in the crankcase.
Disassemble Cylinder Head

NOTE: Before disassembly, mark all valve train components that will be reused, to assure they are reassembled on the same side.

1. Remove the spark plug. See Figure 8-33.

2. Remove the adjustment nuts, pivots and rocker arms from the pivot studs.

3. Remove the rocker arm pivot studs and push rod guide plates. See Figure 8-34.

4. Remove the valves.
   a. Compress the valve springs using a valve spring compressor and remove the keepers. See Figure 8-35.
   b. Remove the compressor; then remove the valve spring caps, valve springs, and valves.

Remove Closure Plate

1. Remove the fourteen hex flange screws securing the closure plate to the crankcase. See Figure 8-36. Note the location and position of any attached clips or clamps.

2. A gasket is used between the closure plate and crankcase. If necessary, carefully tap on the bosses for the starter or oil filter with a soft-faced mallet to loosen. Do not pry on the gasket surfaces of the crankcase or oil pan, as this can cause damage resulting in leaks.
3. Remove the closure plate assembly and gasket. See Figure 8-37.

4. If the wiring harness needs to be separated from the closure plate, pry open the clamps and pull out through the slot.

Remove Cam Gears, Cam Shafts, and Oil Pump

2. Remove the six screws securing the oil passage cover to the closure plate. Remove the cover and gasket. See Figure 8-39.

Disassemble Closure Plate

1. Remove the governor gear and regulating pin assembly. Gently pry upward using the blades of two small screwdrivers. See Figure 8-38.

NOTE: The governor gear is held onto the shaft by small molded tabs in the gear. When the gear is removed these tabs are destroyed and the gear must be replaced. Governor gear removal is required for closure plate disassembly and cleaning of the oil passages.

NOTE: The ACR weight and spring normally captured by the thrust washer and installation of closure plate, will fall out if the exhaust cam gear is turned upside down.
2. Remove the screws securing the cam levers to the crankcase. See Figure 8-41. Mark the cam levers for proper reassembly.

NOTE: Cam Gear assemblies may contain either two or four rivets. The four rivet design is shown in figures.

3. Pull the exhaust side cam shaft and slotted thrust washer, out of the crankcase. See Figure 8-42.

4. If the engine contains an internal drain back tube, unhook it from the oil pump and pull it out of the crankcase passage. Check for cracks, brittleness or damage. Replace if questionable in any way. See Figure 8-43.

NOTE: Engine Serial No. 332740003 and Lower, use a rubber outlet between the oil pump outlet and lower main bearing area. Some models use an open seal with an internal passage to feed oil to the lower bearing. Some models use a closed or solid seal, and the crankshaft is crossed-drilled to feed oil to the lower bearing. See Figure 8-44.

Engine Serial No. 332740003 and Higher, the outlet of the oil pump is closed and no rubber seal is used. See Figure 8-45.
Section 8
Disassembly

5. Remove the two screws securing the oil pump and intake side cam shaft to the crankcase. If a drain back tube is used, it may be unhooked and removed separately or together with oil pump. Carefully pull upward on the cam shaft to remove the assembly from the crankcase cavity. A small rubber oil pump outlet seal on the outlet of the oil pump may become dislodged during removal. **Do not** lose it. See Figures 8-44 and 8-46.

6. If necessary, the oil pump can be separated from the intake side cam shaft. Provide appropriate support for the shaft, and drive out the lower pin. The oil pump assembly can then be removed from the cam shaft. See Figure 8-47.

### Remove Connecting Rod and Piston

1. Rotate the crankshaft so the rod journal is in the 9 o’clock position.

**NOTE:** If a carbon ridge is present at the top of the bore, use a ridge reamer to remove it before attempting to remove the piston.

2. Remove the two hex flange screws and the connecting rod cap. See Figures 8-48.

3. Carefully push the connecting rod and the piston away from the crankshaft and out of the cylinder bore. See Figure 8-49.
Remove Piston from Connecting Rod
1. Remove the wrist pin retainer and wrist pin. Separate the piston from the connecting rod. See Figure 8-50.

Figure 8-50. Separating Piston from Connecting Rod.

Remove Piston Rings
1. Remove the top and center compression rings using a ring expander. See Figure 8-51.
2. Remove the oil control ring rails, then remove the spacer.

Figure 8-51. Removing Piston Rings.

Remove Crankshaft and Balance Weight Assembly
1. Carefully remove the crankshaft and balance weight assembly from the crankcase. See Figure 8-52. On engines after Serial No. 3618005223, carefully lift the lower control link (for balance weight), off the boss of crankcase as the crankshaft is removed. See Figure 8-53.

Figure 8-52. Removing Crankshaft and Balance Weight Assembly (Before Serial No. 3618005213).

Figure 8-53. Removing Crankshaft and Link (After Serial No. 3618005223).
Balance Weight Disassembly
If necessary, the balance weight assembly can be separated from the crankshaft. Disassemble only if required.

1. Remove the crank gear from the crankshaft and carefully remove the key from the keyway. See Figure 8-54.

2. Remove the guide shoe from the guide pin on the flywheel side of the assembly (Before Serial No. 3618005213). See Figure 8-55. Remove the link from the guide pin on the PTO side of the assembly (After Serial No. 3618005223). See Figure 8-56.

3. Remove the long hex flange screw securing the two balance weight halves together on the crankshaft. Note the orientation of all parts. The guide pin is on flywheel side for the balance weight design with the closure plate side guide shoe. The guide pin is on PTO side for the balance weight design with the lower control link. Hold the guide pin with wrench or torx bit socket as required. Do not hold or damage the outside diameter (O.D.) of the guide pin. See Figure 8-55 or 8-56.

Figure 8-54. Removing Crank Gear Key.

Figure 8-55. Removing Balance Weight Screw (Guide Shoe Design Before Serial No. 3618005213).

Figure 8-56. Removing Balance Weight Screw and Guide Pin (Control Link Design After Serial No. 3618005223).
4. Mark the weights for proper reassembly and carefully slide the balance weights off the crankshaft eccentrics. See Figures 8-57 and 8-58.

Figure 8-57. Disassembled Balance Weight (Guide Shoe Design Before Serial No. 3618005213).

Figure 8-58. Disassembled Balance Weight (Control Link Design After Serial No. 3618005223).

Remove Governor Cross Shaft
1. Remove the hitch pin and washer located on the outside of the governor cross shaft. See Figure 8-59.

Figure 8-59. Removing Hitch Pin and Washer.

2. Slide the shaft inward and remove it through the inside of the crankcase. Be careful not to lose the small washer in the inside portion of the shaft. See Figure 8-60.

Figure 8-60. Removing Governor Cross Shaft.

Remove PTO and Flywheel Side Oil Seals
1. Use a seal puller to remove the PTO and flywheel side oil seals. See Figure 8-61.

Figure 8-61. Removing Seal with a Seal Puller.
Section 9
Inspection and Reconditioning

This section covers the operation, inspection, and repair/reconditioning of major internal engine components. The following components are not covered in this section. They are covered in sections of their own:

Air Cleaner, Section 4
Carburetor and External Governor, Section 5
Ignition, Charging and Electric Starter, Section 7

Clean all parts thoroughly. Only clean parts can be accurately inspected and gauged for wear or damage. There are many commercially available cleaners that will quickly remove grease, oil, and grime from engine parts. When such a cleaner is used, follow the manufacturer’s instructions and safety precautions carefully. Use gasket remover to remove old material from the valve cover, cylinder head, crankcase, and oil pan. Do not scrape the gasket surfaces, as this could cause damage that results in leaks.

Make sure all traces of cleaning solvents are removed before the engine is reassembled and placed into operation. Even small amounts of these cleaners can quickly break down the lubricating properties of engine oil.

Refer to A Guide to Engine Rebuilding (TP-2150) for additional information. Measurement Guide (TP-2159-A) and Engine Inspection Data Record (TP-2435) are also available; use these to record inspection results.

Automatic Compression Release (ACR)
This engine is equipped with an Automatic Compression Release (ACR) mechanism. The ACR lowers compression at cranking speeds to make starting easier.

Operation
The ACR mechanism consists of an actuating spring and a pivoting flyweight/control pin assembly, located in the exhaust side cam gear. A thrust washer and mounting of the closure plate hold the ACR in position. See Figure 9-1. At cranking speeds (700 RPM or lower), the spring holds the flyweight in and the rounded surface of the control pin protrudes above the exhaust cam lobe. This pushes the exhaust valve off its seat during the first part of the compression stroke. The compression is reduced to an effective ratio of about 2:1 during cranking.

After starting, when engine speed exceeds 700 RPM, centrifugal force overcomes the force of the flyweight spring. The flyweight moves outward, rotating the control pin to expose the flat surface, which is lower than the cam lobe. The control pin no longer has any effect on the exhaust valve, and the engine operates at full power.

When the engine is stopped, the spring returns the flyweight/control pin assembly to the compression release position, ready for the next start.
Section 9
Inspection and Reconditioning

Benefits
Reducing the compression at cranking speeds results in several important benefits.

1. The starter and battery can be smaller, more practical for the applications in which these engines are used.

2. ACR eliminates kickback during starting, so a spark retard/advance mechanism is no longer required.

3. The choke control setting is less critical with ACR. In the event of flooding, excess fuel is blown out the opened exhaust valve and does not hamper starting.

4. Engines with ACR start much faster in cold weather.

5. Engines with ACR can be started with spark plugs that are worn or fouled. Engines without ACR would be less likely to start with the same plugs.

Cam Gears

Inspection and Service
Inspect the gear teeth and cam lobes of the intake and exhaust cam gears. If the lobes exhibit excessive wear, or the teeth are worn, chipped or broken, replacement of the cam gear(s) will be necessary.

Crankshaft and Crank Gear

Inspection and Service
Inspect the teeth of the crank gear. If the teeth are badly worn, chipped, or some are missing, replacement of the crank gear will be necessary. Remove the gear by pulling it off the key and crankshaft.

Inspect the crankshaft bearing journal surfaces for wear, scoring, grooving, etc. If they show signs of damage or are out of running clearance specifications, the crankshaft must be replaced.

Inspect the crankshaft keyways. If worn or chipped, replacement of the crankshaft will be necessary.

Inspect the crankpin for wear, score marks or aluminum transfer. Slight score marks can be cleaned with crocus cloth soaked in oil. If wear limits are exceeded (see Section 1), it will be necessary to replace the crankshaft.

Crankcase

Inspection and Service
Check all gasket surfaces to make sure they are free of gasket fragments and deep scratches or nicks.

Check the cylinder wall for scoring. In severe cases, unburned fuel can wash the necessary lubricating oil off the piston and cylinder wall. The piston rings make metal to metal contact with the wall, causing scuffing and scoring. Scoring of the cylinder wall can also be caused by localized hot spots from blocked cooling fins or from inadequate or contaminated lubrication.

If the cylinder bore is scored, worn, tapered, or out-of-round, resizing may be possible. Use an inside micrometer or telescoping gauge to determine the amount of wear (refer to Section 1). If wear exceeds the published limits, a 0.08 mm (0.003 in.) oversize piston is available. If the cylinder will not clean up at 0.08 mm (0.003 in.) oversize, a short block or replacement engine will need to be considered.

Honing
While most commercially available cylinder hones can be used with either portable drills or drill presses, the use of a low speed drill press is preferred as it facilitates more accurate alignment of the bore in relation to the crankshaft counter bore. Honing is best accomplished at a drill speed of about 250 RPM and 60 strokes per minute. After installing coarse stones in hone, proceed as follows:

1. Lower the hone into the bore and, after centering, adjust it so that the stones are in contact with the cylinder wall. Use of a commercial cutting-cooling agent is recommended.

2. With the lower edge of each stone positioned even with the lowest edge of the bore, start the drill and honing process. Move the hone up and down while resizing to prevent the formation of cutting ridges. Check the size frequently. Make sure the bore is cool when measuring.
3. When the bore is within 0.064 mm (0.0025 in.) of desired size, remove the coarse stones and replace with burnishing stones. Continue with the burnishing stones until within 0.013 mm (0.0005 in.) of desired size and then use finish stones (220-280 grit) and polish to final size. A crosshatch should be observed if honing is done correctly. The crosshatch should intersect at approximately 23-33° off the horizontal. Too flat an angle could cause the rings to skip and wear excessively, too steep an angle will result in high oil consumption (refer to Figure 9-2).

4. After honing, check the bore for roundness, taper, and size. Use an inside micrometer, telescoping gauge, or bore gauge to take measurements. The measurements should be taken at three locations in the cylinder – at the top, middle, and bottom. Two measurements should be taken (perpendicular to each other) at each of the three locations.

Clean Cylinder Bore after Honing

Proper cleaning of the cylinder walls following honing is critical. Grit left in the cylinder bore can destroy an engine in less than one hour of operation after a rebuild.

The final cleaning operation should always be a thorough scrubbing with a brush and hot, soapy water. Use a strong detergent that is capable of breaking down the machining oil while maintaining a good level of suds. If the suds break down during cleaning, discard the dirty water and start again with more hot water and detergent. Following the scrubbing, rinse the cylinder with very hot, clear water, dry it completely, and apply a light coating of engine oil to prevent rusting.

Measuring Piston-to-Bore Clearance

Before installing the piston into the cylinder bore, it is necessary that the clearance be accurately checked. This step is often overlooked, and if the clearances are not within specifications, engine failure will usually result.

NOTE: Do not use a feeler gauge to measure piston-to-bore clearance – it will yield inaccurate measurements. Always use a micrometer.

Use the following procedure to accurately measure the piston-to-bore clearance:

1. Use a micrometer and measure the diameter of the piston perpendicular to the piston pin, up 8 mm (0.314 in.) from the bottom of the piston skirt as indicated in Figure 9-3.

2. Use an inside micrometer, telescoping gauge, or bore gauge and measure the cylinder bore. Take the measurement approximately 63.5 mm (2.5 in.) below the top of the bore and perpendicular to the piston pin.

3. Piston-to-bore clearance is the piston diameter subtracted from the bore diameter (step 2 minus step 1).

Balance Weight Assembly

The balance weight assembly counterbalances the crankshaft weights and internal forces during operation to minimize vibration. Several key areas of the balance weight must be checked before installation and use. Additionally, the mating components (crankshaft eccentrics and closure plate guide channel) must also be inspected for wear or damage.

Use the following procedure to check the balance weight and matching components.
Section 9
Inspection and Reconditioning

Balance Weight-to-Eccentric Clearance
Before the balance weight assembly is reassembled to the crankshaft, the running clearance to the crankshaft eccentric must be accurately checked. Failure to maintain the required clearances will result in vibration or engine failure.

NOTE: Do not use a feeler gauge to measure balance weight-to-eccentric clearance.

Measuring Balance Weight to Crankshaft Eccentric Ring(s) Clearance
1. Use an inside micrometer, telescoping gauge, or bore gauge and measure the inside diameter of the balance weight bearing surface. Take two measurements 90° to each other on each weight. See Figure 9-4.

Figure 9-4. Measuring Balance Weight Bearing Surface.

2. Then use an outside micrometer and measure across each eccentric on the crankshaft. Again take two measurements 90° to each other. See Figure 9-5.

Figure 9-5. Measuring Crankshaft Eccentric.

3. The running clearance is the eccentric diameter subtracted from the balance weight bearing diameter (step 1 minus step 2). If the measurements are outside the maximum wear limits listed in Section 1, the affected component(s) must be replaced.

1. Use an outside micrometer and measure the outside width of the balance weight guide shoe. See Figure 9-6.

Figure 9-6. Measuring Balance Weight Guide Shoe.

2. Use an inside micrometer, telescoping gauge or similar tool and measure the width of the guide channel in the closure plate. See Figure 9-7. Record these dimensions.

Figure 9-7. Measuring Guide Channel in Closure Plate.
3. Use an outside micrometer again and measure the O.D. of the balance weight guide pin. See Figure 9-8.

4. Use a split ball gauge or dial calipers and measure the I.D. of the corresponding hole in the guide shoe. See Figure 9-9. Record these dimensions.

If any of the measurements taken are outside the maximum wear limits listed in Section 1, the affected component(s) must be replaced.

**Flywheel**

**Inspection**
Inspect the flywheel for cracks and check the keyway for wear or damage. Replace the flywheel if cracked. If the flywheel key is sheared or the keyway is damaged, replace the crankshaft, flywheel, and key.

Inspect the ring gear for cracks or damage. Ring gears are not available separately. Replace the flywheel if the ring gear is damaged.
Section 9
Inspection and Reconditioning

Cylinder Head and Valves

Inspection and Service
Carefully inspect the valve mechanism parts. Inspect the valve springs and related hardware for excessive wear or distortion. Check the valves and valve seats for evidence of deep pitting, cracks, or distortion. Check the running clearance between the valve stems and guides. See Figure 9-10 for valve details and specifications.

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Intake</th>
<th>Exhaust</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Seat Angle</td>
<td>89°</td>
<td>89°</td>
</tr>
<tr>
<td>B Guide Depth</td>
<td>10.20 mm</td>
<td>6.2 mm</td>
</tr>
<tr>
<td>C Guide I.D.</td>
<td>6.038/6.058 mm</td>
<td>6.038/6.058 mm</td>
</tr>
<tr>
<td>D Valve Head Diameter</td>
<td>37.625/37.375 mm</td>
<td>32.125/32.375 mm</td>
</tr>
<tr>
<td>E Valve Face Angle</td>
<td>45°</td>
<td>45°</td>
</tr>
<tr>
<td>F Valve Margin (Min.)</td>
<td>1.5 mm</td>
<td>1.5 mm</td>
</tr>
<tr>
<td>G Valve Stem Diameter</td>
<td>5.982/6.000 mm</td>
<td>5.970/5.988 mm</td>
</tr>
</tbody>
</table>

Figure 9-10. Valve Details.
Hard starting, or loss of power accompanied by high fuel consumption, may be symptoms of faulty valves. Although these symptoms could also be attributed to worn rings, remove and check the valves first. After removal, clean the valve heads, faces, and stems with a power wire brush. Then, carefully inspect each valve for defects such as warped head, excessive corrosion, or worn stem end. Replace valves found to be in bad condition. A normal valve and valves in bad condition are shown in the accompanying illustrations.

**Normal:** Even after long hours of operation a valve can be reconditioned and reused if the face and margin are in good shape. If a valve is worn to where the margin is less than 1/32” do not reuse it. The valve shown was in operation for almost 1000 hours under controlled test conditions.

**Leakage:** A poor grind on a valve face or seat will allow leakage, resulting in a valve burned on one side only.

**Bad Condition:** The valve depicted here should be replaced. Note the warped head; margin damaged and too narrow. These conditions could be attributed to excessive hours or a combination of poor operating conditions.

**Coking:** Coking is normal on intake valves and is not harmful. If the seat is good, the valve could be reused after cleaning.
Section 9
Inspection and Reconditioning

**Excessive Combustion Temperatures:** The white deposits seen here indicate very high combustion temperatures, usually due to a lean fuel mixture.

**Gum:** Gum deposits usually result from using stale gasoline. This condition is often noted in applications where fuel is not drained out of tank during the off season. Gum is a prevalent cause of valve sticking. The cure is to ream the valve guides and clean or replace the valves, depending on their condition.

**Stem Corrosion:** Moisture in fuel or from condensation are the most common causes of valve stem corrosion. Condensation occurs from improper preservation during storage and when engine is repeatedly stopped before it has a chance to reach normal operating temperatures. Replace corroded valves.

**Overheating:** An exhaust valve subject to overheating will have a dark discoloration in the area above the valve guide. Worn guides and faulty valve springs may cause this condition. Also check for clogged air intake, and blocked fins when this condition is noted.
Valve Guides
If a valve guide is worn beyond specifications, it will not guide the valve in a straight line. This may result in burned valve faces or seats, loss of compression, and excessive oil consumption.

To check valve guide-to-valve stem clearance, thoroughly clean the valve guide and, using a split-ball gauge, measure the inside diameter. Then, using an outside micrometer, measure the diameter of the valve stem at several points on the stem where it moves in the valve guide. Use the largest stem diameter to calculate the clearance. If the intake clearance exceeds 0.038/0.076 mm (0.0015/0.0030 in.) or the exhaust clearance exceeds 0.050/0.088 mm (0.0020/0.0035 in.), determine whether the valve stem or guide is responsible for the excessive clearance.

Maximum (I.D.) wear on the intake valve guide is 6.135 mm (0.2415 in.) while 6.160 mm (0.2425 in.) is the maximum allowed on the exhaust guide. The guides are not replaceable, but if the guides are within limits but the valve stems are worn beyond limits, replace the valves.

Valve Seat Inserts
Hardened steel alloy intake and exhaust valve seat inserts are press fitted into the cylinder head. The inserts are not replaceable, but they can be reconditioned if not too badly pitted or distorted. If the seats are cracked or badly warped, the cylinder head should be replaced.

Recondition the valve seat inserts following the instructions provided with the valve seat cutter being used. A typical cutter is shown in Figure 9-11. The final cut should be made with an 89° cutter as specified for the valve seat angle in Figure 9-10. With the proper 45° valve face angle, and the valve seat cut properly (44.5° as measured from centerline when cut 89°) this would result in the desired 0.5° (1.0° full cut) interference angle where the maximum pressure occurs on the valve face and seat.

Lapping Valves
Reground or new valves must be lapped in, to provide a good seal. Use a hand valve grinder with suction cup for final lapping. Lightly coat valve face with fine grade of grinding compound, then rotate valve on seat with grinder. Continue grinding until smooth surface is obtained on seat and on valve face. Thoroughly clean cylinder head in soap and hot water to remove all traces of grinding compound. After drying cylinder head, apply a light coating of engine oil to prevent rusting.

Pistons and Rings
Inspection
Scuffing and scoring of pistons and cylinder walls occurs when internal temperatures approach the welding point of the piston. Temperatures high enough to do this are created by friction, which is usually attributed to improper lubrication, and/or overheating of the engine.

Normally, very little wear takes place in the piston boss-piston pin area. If the original piston and connecting rod can be reused after new rings are installed, the original pin can also be reused, but new piston pin retainers are required. The piston pin is part of the piston assembly; if the pin boss or the pin are worn or damaged, a new piston assembly is required.

Ring failure is usually indicated by excessive oil consumption and blue exhaust smoke. When rings fail, oil is allowed to enter the combustion chamber where it is burned along with the fuel. High oil consumption can also occur when the piston ring end gap is incorrect because the ring cannot properly conform to the cylinder wall under this condition. Oil control is also lost when ring gaps are not staggered during installation.
When cylinder temperatures get too high, lacquer and varnish collect on pistons causing rings to stick which results in rapid wear. A worn ring usually takes on a shiny or bright appearance.

Scratches on rings and pistons are caused by abrasive material such as carbon, dirt, or pieces of hard metal.

Detonation damage occurs when a portion of the fuel charge ignites spontaneously from heat and pressure shortly after ignition. This creates two flame fronts that meet and explode to create extreme hammering pressures on a specific area of the piston. Detonation generally occurs from using low octane fuels.

Preignition or ignition of the fuel charge before the timed spark can cause damage similar to detonation. Preignition damage is often more severe than detonation damage. Preignition is caused by a hot spot in the combustion chamber from sources such as glowing carbon deposits, blocked fins, improperly seated valve, or wrong spark plug. See Figure 9-12 for some common types of piston and ring damage.

Replacement pistons are available in STD and \(0.08\text{ mm (0.003 in.)}\) oversize, which include new rings and piston pins. Service replacement piston ring sets are also available separately. Always use new piston rings when installing pistons. Never reuse old rings.

The cylinder bore must be deglazed before service ring sets are used.

---

Figure 9-12. Common Types of Piston and Ring Damage.

<table>
<thead>
<tr>
<th>Stuck, Broken Rings</th>
<th>Abrasive Scratched Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overheated or Deteriorated Oil</td>
<td>Scored Piston and Rings</td>
</tr>
</tbody>
</table>
Some important points to remember when servicing piston rings:

1. If the cylinder bore is within the wear limits (refer to Section 1) and the old piston is within wear limits, free of score or scuff marks, the old piston may be reused.

2. Remove old rings and clean up grooves. Never reuse old rings.

3. Before installing the rings on the piston, place each of the top two rings in its running area in the cylinder bore and check the end gap (see Figure 9-13). Compare to the listed specifications.

Top and Middle Compression Ring End Gap
- New Bore
  - Top Ring: 0.15/0.40 mm (0.006/0.016 in.)
  - Middle Ring: 0.30/0.55 mm (0.012/0.022 in.)
  - Max. Used Bore: 0.77 mm (0.030 in.)

4. After installing the new compression (top and middle) rings on the piston, check piston-to-ring side clearance. The maximum recommended side clearance for each ring is 0.04 mm (0.0016 in.). If the side clearance is greater than specified, a new piston must be used. Refer to Figure 9-14.

Top Compression Ring-to-Groove
- Side Clearance: 0.04 mm (0.0016 in.)

Middle Compression Ring-to-Groove
- Side Clearance: 0.04 mm (0.0016 in.)

NOTE: Rings must be installed correctly. Ring installation instructions are usually included with new ring sets. Follow instructions carefully. Use a piston ring expander to install rings. Install the bottom (oil control) ring first and the top compression ring last. Refer to Figure 9-15.
Section 9
Inspection and Reconditioning

1. Oil Control Ring (Bottom Groove): Install the expander and then the rails. Make sure the ends of the expander are not overlapped.

2. Compression Ring (Center Groove): Install the center ring using a piston ring installation tool. Make sure the identification mark is up when the ring is installed.

3. Compression Ring (Top Groove): Install the top ring using a piston ring installation tool. Make sure the identification mark is up when the ring is installed.

Connecting Rods

Inspection and Service
Check the bearing area (big end) for score marks and excessive wear (measure running and side clearances; refer to Section 1. Service replacement connecting rods are available in STD crankpin size.

Oil Pump Assembly and Pressure Relief Valve

Inspection and Service
The closure plate must be removed to inspect and service the oil pump. Refer to the Disassembly and Reassembly Sections (8 and 10) for removal and reinstallation procedures. Check the oil pump and gears for cracks, damage, wear, and smooth rotation. Replace the pump if any binding is noted or reuse is questionable in any way.

A pressure relief valve is built into the oil pump to limit maximum pressure. It is not serviceable. If a problem exists with the pressure relief valve, the oil pump assembly should be replaced.

Closure Plate and Passage Cover

Inspection and Service
If disassembly was performed, inspect and ensure the oil passages in the closure plate and the passage cover are completely clean and not obstructed in any way. See Figures 9-16 and 9-17. Check straightness of the passage cover if required, against a flat surface.
Governor Gear and Shaft

Inspection
Inspect the governor gear teeth. Look for any evidence of worn, chipped, or cracked teeth. If one or more of these problems is noted, replace the governor gear.

The gear is held on the governor shaft by molded tabs, which are damaged when the gear is removed. Never reuse the gear once it has been pulled from the shaft. Replace the governor shaft only if it is damaged or worn.

Procedure to Remove Governor Shaft:
1. Remove the blower housing, flywheel, and cooling fan.
2. Remove the stator and crankshaft key.
3. Remove the closure plate screws and closure plate.
4. Rotate engine to top dead center aligning timing marks on the crankshaft and cam gears.
5. Remove the governor gear assembly and regulating pin from the closure plate with two small screwdrivers.
6. Locate the governor pin from flywheel side. With a small punch, drive the pin out of the closure plate. This could also be done with a press. DO NOT remove the governor pin with a vise grip or pliers, you may damage the closure plate.
7. Remove any old gasket material from the mating surfaces of the crankcase and closure plate. Use an aerosol gasket remover to help loosen any old gasket material. Do not scrape the surfaces, as any scratches, nicks, or burrs can result in leaks.

Procedure to Install Governor Shaft:
1. Install new pin by pressing or lightly tapping it into the closure plate. It must be installed so that it protrudes **44.50 mm** (**1.750 in.**), plus or minus **0.101 mm** (**0.004 in.**) above the crankcase boss. See Figure 9-19.

*To Gasket Surface - Before Oil Passage Cover Plate and Gasket are Assembled

![Governor Shaft Press Depth](image)

2. Install the new governor regulating pin and governor gear assembly.
3. Make sure governor gear assembly rotates freely.
4. Check that timing marks are still aligned.
5. Install a new closure plate gasket and install the closure plate. Refer to Section 10, Reassembly for proper torque sequence and specification.
6. Complete engine reassembly following Reassembly procedures.
7. When engine reassembly is completed, reset initial governor adjustment according to procedure in Section 5, Fuel System and Governor.
Section 10
Reassembly

The following sequence is suggested for complete engine reassembly. This procedure assumes that all components are new or have been reconditioned, and all component subassembly work has been completed. This procedure may be varied to accommodate options or special equipment.

NOTE: Make sure the engine is assembled using all specified torque values, tightening sequences, and clearances. Failure to observe specifications could cause severe engine wear or damage.

NOTE: Always use new gaskets.

NOTE: Make sure all components have been properly cleaned BEFORE reassembly.

NOTE: Apply a small amount of oil to the threads of critical fasteners before assembly, unless a Sealant or Loctite® is specified or preapplied.

Typical Reassembly Sequence
The following sequence is suggested for complete engine reassembly. This procedure assumes that all components are new or have been reconditioned, and all component subassembly work has been completed. The sequence may vary to accommodate options or special equipment. Detailed procedures follow:

1. Install PTO side oil seal.
2. Install governor cross shaft.
3. Install oil pump and intake cam shaft assembly.
4. Install crankshaft and balance weight.
5. Install piston rings.
6. Install piston to connecting rod.
7. Install piston and rod to crankshaft.
8. Install cam levers.
9. Install exhaust cam shaft, cam gear and ACR.
10. Install intake cam gear.
11. Install oil seal into closure plate (flywheel side).
12. Install closure plate gasket, closure plate and wiring harness.
15. Install rocker arms and push rods.
16. Install valve cover.
17. Install stator and wiring harness.
18. Install flywheel and fan.
19. Install electric starter.
20. Install ignition module.
21. Install spark plug.
22. Install heat deflector, carburetor, linkage, and air cleaner base.
23. Install and adjust governor lever, mounting speed control bracket.
24. Install fuel pump (some models).
25. Install rectifier-regulator.
26. Install blower housing and flywheel screen.
27. Install Oil Sentry™ switch or pipe plug.
28. Install air cleaner element, precleaner and air cleaner cover.
29. Install muffler.

Install PTO Side Oil Seal
1. Use a seal driver and install to a depth of 5.5 mm (0.216 in.) into the crankcase. See Figures 10-1 and 10-2.

Figure 10-1. Installing PTO Side Oil Seal.
Install Governor Cross Shaft

1. Place the thin thrust washer onto the governor cross shaft as far as it will go.

2. Lightly lubricate the shaft with oil, and install it from inside the crankcase. See Figure 10-3.

3. Slide the thick thrust washer onto the shaft from the outside as far as it will go. Secure by inserting the hitch pin in the machined groove. See Figure 10-4.

Install Oil Pump Assembly and Intake Cam Shaft

1. If the oil pump assembly was removed from the intake cam shaft, reassemble it onto the shaft. The press fit of the drive pins in the holes may be one of two designs. One style of tube has drive pin holes machined to be a clearance (slip) fit on one side and a press fit on the other accepting smooth style drive pins. Later design tubes have holes uniformly machined and use knurled style drive pins. Support the cam shaft (clearance holes "up", when applicable), and install the shorter 2.5 mm (0.098 in.) diameter pin in the outer hole, closest to the bottom end. See Figures 10-5 and 10-6. Center the pin in the shaft.
Section 10
Reassembly

1. Intake Cam Shaft
2. 3 mm Diameter Pin
3. Oil Pump Assembly
4. 2.5 mm Diameter Pin
5. #1 Hole Location
6. #2 Hole Location

2. If it was removed, install and center the longer, 3 mm diameter drive pin into the upper hole (See Figure 10-6).

3. Lightly grease the gerotor gears and install into the oil pump, with the short drive pin fitted into the slot of the inner gear. See Figure 10-7.

4. Determine if the outlet of the oil pump is open or closed. See Figure 10-9. The open style pumps require the use of a rubber seal between the pump outlet and lower main bearing area. See Figure 10-8. Some models use an open style seal with an internal passage to feed oil to the lower bearing. Some models use a closed seal without an oil passage, and the crankshaft is crossed-drilled for lower bearing lubrication. Both styles of outlet seals are shown in Figure 10-9. If a new seal is to be ordered, be sure it is the same style as the one that was taken out. Lightly lubricate the ends of the oil pump outlet seal with oil and install in into the outlet of the oil pump. See Figure 10-10.
5. Install the intake cam shaft down into the crankcase boss. Seat the rubber oil pump outlet seal into the machined pocket. If an open style outlet seal is used, check to make sure the small feed hole is open and aligned with the lower main bearing oil feed hole. Use a 3/32” allen wrench, or a light with a mirror. See Figure 10-11. Push the steel sleeves in the pump housing down until bottomed against the mounting surface. Install the two M5 mounting screws. Hold the pump outlet against the main bearing area and torque the screws to 6.2 N·m (55 in. lb.) into new as case holes or 4.0 N·m (35 in. lb.) into used holes. See Figure 10-12.

6. If the engine uses a drain back tube, insert the round flanged end into the hole near base of cylinder and clip it onto the oil pump body. See Figure 10-13.

![Figure 10-11. Checking Outlet Seal Passage Opening (Open Style).](image)

![Figure 10-12. Torquing Oil Pump Mounting Screws.](image)

**Figure 10-13. Installing Drain Back Tube (Some Models).**

**Install Crankshaft and Balance Weight**

1. Assemble the crankshaft balance weight if removed from the crankshaft.

   a. Lubricate the crankshaft eccentrics and the balance weight bearing surfaces with oil.

   b. Install the two balance weight halves onto the crankshaft eccentrics as marked or originally installed.

**Engines Serial No. 361805213 and Below:**

   c. Align the weights and install the balance weight screw, through the mounting holes, from the PTO side. Thread it into the guide pin outside the weight on the flywheel side. Hold the guide pin with a wrench or Torx bit, and torque the screw to 11.3 N·m (100 in. lb.). See Figure 10-14. Do not hold, or damage the outside diameter (O.D.) of the guide pin.
Engines Serial No. 3618005223 and Above:

c. Align the weights and insert the balance weight screw, through the mounting holes from the flywheel side. Thread it into the guide pin outside the weight on the PTO side. Hold the guide pin with a wrench or Torx bit, and torque the screw to 11.3 N·m (100 in. lb.). See Figure 10-15. Do not hold, or damage the outside diameter (O.D.) of the guide pin. Apply grease to the inner diameter (I.D.) of each hole in control link and install one end over the guide pin.

Engines Serial No. 3618005213 and below:

3. Carefully install the crankshaft into crankcase, through the PTO seal, and seat fully into place. Rotate the crankshaft so that the journal for the connecting rod is away from the cylinder. See Figures 10-17.

4. Install the balance weight guide shoe onto the guide pin with the solid end toward the crankshaft. See Figure 10-18.
3. Make sure pivot pin on boss in lower section of crankcase is clean and free of any nicks, or surface irregularities. Apply a small amount of grease to O.D.

4. Apply a small amount of grease to O.D. of guide pin on PTO side of counterweight and install the control link. Carefully install the crankshaft with link (hold in position as required), through the PTO seal. Slightly rotate the counterweight assembly and guide the outer end of link over the stationary guide pin in crankcase. Seat link and crankshaft fully into place, do not force either part into position. See Figures 10-19 and 10-20.

Install Piston Rings

NOTE: For detailed piston inspection procedures and piston ring installation refer to Section 9 Inspection and Reconditioning.

Install Piston to Connecting Rod

1. Assemble the piston, connecting rod, piston pin, and piston pin retainers. See Figure 10-21.
Install Piston and Connecting Rod

NOTE: Proper orientation of the piston/connecting rod inside the engine is extremely important. Improper orientation can cause extensive wear or damage.

1. Stagger the piston rings in the grooves until the end gaps are 120° apart. Lubricate the cylinder bore, crankshaft journal, connecting rod journal, piston, and rings with engine oil.

2. Compress the piston rings using a piston ring compressor. Orient the FLY mark on the piston toward the flywheel side of the crankcase. See Figure 10-22. Place the ring compressor on the top surface of the crankcase and make certain it is seated down around the entire circumference. Use a soft, rubber grip hammer handle and tap the piston/connecting rod into the bore. See Figure 10-23. The first tap should be rather firm, so the oil ring moves from the compressor into the bore in one smooth, quick motion. Otherwise the oil ring rails may spring out and jam between the ring compressor and the top of the bore.

3. Guide the connecting rod down and rotate the crankshaft to mate the journals. Install the rod cap.

4. Install the hex flange screws and torque in 2 increments, first to 5.5 N·m (50 in. lb.), finally to 11.5 N·m (100 in. lb.). See Figure 10-24.
Section 10
Reassembly

Install Cam Levers
1. Install the two cam levers as shown in Figure 10-25. The dimple for seating the push rod must face up. Secure each cam lever using an M6 hex flange screw. Torque the screws to 7.5 N·m (65 in. lb.). Lubricate the dimple and bottom side of the cam lever with light grease or oil.

2. Apply a dab of grease to the formed groove in the thrust washer. Slide the washer onto the cam shaft so the short drive pin is seated in the groove. The grease will hold the washer in position. Pivot the exhaust cam lever toward the push rod bore, then insert the cam shaft into the counterbore of the crankcase. Make sure the pin stays in the groove of the thrust washer. See Figure 10-27.

Install the Exhaust Cam Shaft and Cam Gear
1. If the drive pins were removed from the exhaust cam shaft, follow the same procedure used earlier for the intake cam shaft and reinstall them. See Figure 10-25.

2. Apply a dab of grease to the formed groove in the thrust washer. Slide the washer onto the cam shaft so the short drive pin is seated in the groove. The grease will hold the washer in position. Pivot the exhaust cam lever toward the push rod bore, then insert the cam shaft into the counterbore of the crankcase. Make sure the pin stays in the groove of the thrust washer. See Figure 10-27.

3. Lubricate the cam surfaces of the cam gears with light grease or oil.

4. Assemble and install the ACR (automatic compression release) into the exhaust cam gear if removed for servicing.
   a. Install the spring onto the ACR weight with loop around post, and the formed upper leg hooked behind the upper section. See Figure 10-28.
   b. Install the ACR assembly into hole of exhaust cam gear and hook the long leg behind the notched tab. See Figure 10-29.
Install Intake Cam on Cam Shaft
1. Lift the intake cam lever and install the intake cam gear onto the intake cam shaft, engaging the slot with the upper drive pin. Rotate the gear and shaft so the IN timing mark on the cam gear is in the 4 o’clock position. Early Models Only: Install the thrust washer (if used originally), onto the cam shaft. See Figure 10-31.

NOTE: Cam Gear assemblies may contain either two or four rivets. The four rivet design is shown in figures.

Install Crank Gear
1. Orient the crankshaft so the key is in the 12 o’clock position. Hold the crank gear with the timing marks visible and slide it onto the crankshaft and key, so the timing marks on the crank gear align with the timing marks on the cam gears. See Figure 10-32.
Install Flywheel Side Oil Seal

1. Lubricate the outside diameter and lip of the flywheel end oil seal. Support the closure plate and install the oil seal. Using a seal driver, drive the seal to a depth of 5 mm (0.196 in.) in the seal bore. See Figure 10-33.

Install Closure Plate Gasket, Closure Plate, and Wiring Harness

NOTE: The special gasket used between the closure plate and crankcase controls crankshaft endplay, no shimming is required. Do not use RTV sealant in place of the gasket.

1. Make sure the sealing surfaces of crankcase and closure plate are clean, dry, and free of any nicks or burrs. Install a new closure plate gasket onto the crankcase.

NOTE: Engines with Guide Shoe Design Balance Weight: Apply grease to the outside flat surfaces of the balance weight guide shoe. Position the guide shoe so the solid end is toward the crankshaft. See Figure 10-33. Keep the guide shoe stays in this position during the next step.

2. Ensure the gasket, cover plate, and governor gear assembly, have been properly assembled to the closure plate (refer to Section 9). Start the closure plate onto the crankcase. Be sure the guide shoe (applicable models), is aligned with the guide channel in the closure plate, and the cam shafts and governor gear shaft are aligned with their mating bearing surfaces. See Figure 10-34. As the closure plate is lowered into final position, rotate the crankshaft slightly to help engage the governor gear.

3. Install the fourteen hex flange screws securing the closure plate to the crankcase, with any clamps for the wiring harness and the sheathed RFI suppression spark plug lead (#5 location, if so equipped), positioned as shown in Figure 10-35. If the wiring harness was separated from the closure plate, route the harness through the clamps and the slot in the closure plate. Close the clamps to retain the harness.

4. Torque the closure plate fasteners to 24.5 N·m (216 in. lb.) using the sequence shown in Figure 10-36.
Figure 10-36. Closure Plate Fastener Torque Sequence.

Assemble Cylinder Head
Prior to assembly, lubricate all the components with engine oil, including the tips of the valve stems and valve guides. Using a valve spring compressor, install the following items in the order listed. See Figure 10-37.

- Intake and exhaust valves
- Valve spring caps
- Valve springs
- Valve spring retainers
- Valve spring keepers

Figure 10-37. Assembling Cylinder Head.

Install Cylinder Head
NOTE: Do not reuse cylinder head screws or gasket, always replace with new parts.

1. Check to make sure there are no nicks or burrs on the sealing surfaces of the cylinder head or crankcase.

2. If the engine uses a drain back check ball, install it into the keyhole slot in the top of the crankcase. See Figure 10-38.

Figure 10-38. Installing Drain Back Check Ball. (Some Models)

3. Install a new cylinder head gasket. See Figure 10-39.

Figure 10-39. Installing Head Gasket.

4. Install the cylinder head and start the six hex flange screws. Install the thick washer on the screw closest to the exhaust port. See Figure 10-39.

NOTE: If the crankshaft has not been turned since the installation of the crank gear, turn it one (1) complete revolution. This will set the piston at top dead center (TDC) of the compression stroke, for proper valve lash adjustment later.
6. Using the torque sequence shown in Figure 10-41, torque the cylinder head screws in two stages; initially to 20.5 N·m (180 in. lb.), and finally to 41.0 N·m (360 in. lb.).

**NOTE:** If being reused, push rods should always be installed in their original position.

3. Note the mark or tag identifying the push rod as either intake or exhaust. Apply grease to the ends of the push rods. Insert the push rods into the push rod bores and seat the lower end into the dimpled recess of the cam levers. It may be necessary to lift or shift the lower end of the push rod slightly, and feel that the rod seats into the recess. Once seated, hold it in place as you position the rocker arm. The push rod must stay in the recess while the rocker arms are positioned and adjusted. See Figure 10-43.
4. With the engine at TDC of the compression stroke, insert the correct size flat feeler gauge (see below) between the appropriate valve stem and rocker arm. Tighten the adjustment nut with a wrench until a slight drag is felt on the feeler gauge. Hold the nut in that position and torque the set screw (T15 Torx drive) to 5.5 N·m (50 in. lb.). To prevent damage to the nut, torque the Torx screw only. Perform the adjustment procedure on the other valve. See Figures 10-44 and 10-45.

Valve Clearance Specifications:
- Intake Valve: 0.127 mm (0.005 in.)
- Exhaust Valve: 0.178 mm (0.007 in.)

Install Valve Cover
1. Make sure the sealing surfaces of the valve cover and cylinder head are clean, and free of any nicks or burrs.
2. Install a new valve cover gasket, followed by the valve cover. Position any brackets that mount on the valve cover and start the seven mounting screws.
3. Torque the valve cover screws to 11.0 N·m (95 in. lb.) into new, as-cast holes, or 7.5 N·m (65 in. lb.) into used holes, using the sequence shown in Figure 10-46.
Install Stator and Wiring Harness

Install Stator
1. Position the stator onto the mounting bosses so that the leads lay in the channel and recess of the closure plate. See Figure 10-47. They will become captured when the blower housing is installed. If a clamp was used to retain the leads, remove the screw in the No. 13, See Figure 10-36, location and install the clamp. Hold the clamp in position and torque the screw to 24.5 N·m (216 in. lb.)

2. Install the two hex flange screws to secure the stator and torque to 6.0 N·m (55 in. lb.), into new, as-cast holes, or 4.0 N·m (35 in. lb.), into used holes.

Install Wiring Harness
1. Check that the locking tang on the terminal of the violet B+ wiring harness lead is angled upward. Insert the terminal into the center location of the rectifier-regulator plug connector until it locks into place. If not already inserted, the two AC leads from the stator go in the outer locations. See Figure 10-48.

Install Pipe Plug or Fitting and Pulse Line for Fuel Pump
1. Apply pipe sealant with Teflon® (Loctite® No. 59241 or equivalent), to the 1/8” pipe plug or 90° fitting (as equipped). Install and tighten into the tapped vacuum port of the closure plate. Torque the plug to 4.5-5.0 N·m (40-45 in. lb.). Turn the outlet of a fitting to the 8 o’clock position.

2. If a fitting is used, connect the fuel pump pulse line and secure with the clamp. See Figure 10-49.
Install Fan and Flywheel

**WARNING: Damaging Crankshaft and Flywheel can Cause Personal Injury!**

Using improper procedures to install the flywheel can crack or damage the crankshaft and/or flywheel. This not only causes extensive engine damage, but can also cause personal injury, since broken fragments could be thrown from the engine. Always observe and use the following precautions and procedures when installing the flywheel.

**NOTE:** Before installing the flywheel make sure the crankshaft taper and flywheel hub are clean, dry and completely free of lubricants. The presence of lubricants can cause the flywheel to be over stressed and damaged when the mounting screw is torqued to specification.

**NOTE:** Make sure the flywheel key is installed properly in the keyway. The flywheel can become cracked or damaged if the key is not properly installed.

**NOTE:** Always use a flywheel strap wrench or flywheel holding tool to hold the flywheel when tightening the flywheel fastener. Do not use any type of bar or wedge between the cooling fins or flywheel ring gear, as these parts could become cracked or damaged.

1. Install the appropriate key into the crankshaft keyway. Based on crankshaft keyway style, use either a woodruff or straight key. Make sure key is fully seated.

2. Install the flywheel onto the crankshaft aligning the keyway with the key. Be careful not to shift or unseat the key.

3. Position the fan onto the flywheel, so the locating pins drop into the corresponding recesses.

4. Install the fan mounting plate onto the fan, aligning the four cutouts, followed by the heavy flat washer and hex flange screw. See Figure 10-50.

5. Use a flywheel strap wrench or holding tool to hold the flywheel and torque the hex flange screw. For an M10 screw, torque to 66.5 N·m (49 ft. lb.). For an M12 screw, torque to 88.0 N·m (65 ft. lb.). See Figure 10-51.
Install Electric Starter
1. Install the electric starter to the closure plate and secure with the two #10-24 hex nuts. Make sure the wires are clear of any moving parts and torque the hex nuts to 3.6 N·m (32 in. lb.). See Figure 10-52.

2. Rotate the flywheel to align the magnet with the ignition module.

3. Insert a 0.25 mm (0.010 in.) flat feeler gauge between the magnet and ignition module. See Figure 10-54. Loosen the screws so the magnet pulls the module against the feeler gauge.

Install Ignition Module
1. Rotate the flywheel so the magnet is away from the ignition module bosses. Using the hex flange screws, install the ignition module to the crankcase bosses with the kill terminal up. Move the module as far from the flywheel as possible. Tighten the hex flange screws sufficiently to keep the module in position. See Figure 10-53.

2. Torque the two screws to 6.0 N·m (55 in. lb.), into new, as-cast holes, or 4.0 N·m (35 in. lb.), into used holes.

3. Rotate the flywheel back and forth checking for clearance between the magnet and ignition module. Make sure the magnet does not strike the module. Recheck the air gap with a feeler gauge and readjust if necessary. Final Air Gap: 0.203/0.305 mm (0.008/0.012 in.).

4. Connect the kill lead to the tab terminal on the ignition module.

5. If equipped with a sheathed RFI suppression spark plug lead, place the lead in retaining clip so braided wires will be in direct contact with clip when closed. Carefully close the clip with a pliers until a 0.127 mm (0.005 in.) gap exists between the ends. **Do not** pinch or flatten the clip. See Figure 10-55.
Section 10
Reassembly

Install New Spark Plug
1. Use a new Champion® RC12YC or QC12YC (or equivalent) spark plug.

2. Set the gap to 0.76 mm (0.030 in.).

3. Install the spark plug and torque it to 24-30 N·m (18-22 ft. lb.). See Figure 10-56.

Install Heat Deflector, Carburetor, Linkage and Air Cleaner Base
1. If the carburetor mounting stud was removed, reinstall it in the outer cylinder location (closest to head). Use an E5 Torx® socket or two hex flange nuts tightened together, and turn the stud in until tight. See Figure 10-57.

2. Make sure all the gasket surfaces are clean and free of any nicks or damage.

3. Install a new intake gasket onto the carburetor stud, then install the heat deflector. The curved section should be down, toward the engine. If the deflector contains a molded protruding point, it should be towards the back inserted into the intake port. Be sure the protruding point goes through the large hole in the gasket, to keep it aligned. See Figure 10-58.
Section 10
Reassembly

4. Models with one screw and one mounting stud only: Insert a 3/16" diameter rod, approximately 4” long, into the open mounting hole in the heat deflector to serve as a temporary alignment pin. See Figure 10-59. Be careful not to force the rod or damage the threads.

Figure 10-59. Inserting Alignment Pin.

5. Install a new carburetor gasket onto the mounting stud(s) and/or alignment pin.

6. Attach the choke and throttle linkages to the carburetor and install the carburetor assembly. See Figure 10-60. If the governor lever was not disconnected, slide it onto the governor shaft with the lever up.

Figure 10-60. Installing Carburetor Assembly with Linkages.

7. If the carburetor has a fuel solenoid, fasten the ground lead to the crankcase boss, with the toothed washer between the eyelet terminal and the boss. See Figure 10-61. Torque the screw to 8.0 N·m (70 in. lb.). Connect the solenoid power lead to the wiring harness and secure with a tie strap. See Figure 10-62.

Figure 10-61. Securing Ground Lead.

Figure 10-62. Fuel Solenoid Lead Secured with Tie Strap.

8. Connect the fuel line to the carburetor and secure with a hose clamp. See Figure 10-63.

Figure 10-63. Connecting Fuel Line to Carburetor.
9. Install the air cleaner base.
   
a. Install a new air cleaner base gasket. Check that the two metal spacers are in the air cleaner base mounting holes and install the base onto the stud(s), and or alignment pin. Make sure the upper mounting tab is positioned above the closure plate boss. See Figure 10-64. Install the hex flange nut(s) and finger tighten See Figure 10-65.

b. Models with one screw and one mounting stud only: Apply hand pressure to keep the parts from shifting, then carefully remove the alignment pin and install DRY the long M6 thread forming screw – DO NOT OIL. See Figure 10-66. Check to make sure all gaskets are still in proper position.

c. Torque the nut(s) to 5.5 N·m (48 in. lb.). Torque the screw to 8.0 N·m (70 in. lb.) into a new hole, or 5.5 N·m (48 in. lb.) into a used hole, do not over tighten. See Figure 10-67. The M6 screw for the upper tab will be installed when the blower housing is mounted.
Install and Adjust Governor Lever

1. Install the governor lever* onto the governor shaft with the lever section up. Connect the throttle linkage using the black linkage bushing. See Figure 10-68.

*NOTE: It is recommended that a new governor lever be installed whenever removal is performed.

2. Move the governor lever toward the carburetor, to the limit of its travel (wide-open throttle) and hold in this position. Do not apply excessive pressure, flexing or distorting the linkage. Grasp the cross shaft with a pliers, and turn the shaft counterclockwise as far as it will go. See Figure 10-69. Torque the hex nut to 7.0-8.5 N·m (60-75 in. lb.).

Mounting Speed Control Bracket

1. Attach the governor spring to the governor lever and the throttle lever of the speed control bracket, in the original holes. If the holes were not marked during disassembly, refer to the charts in Section 5. Connect the choke linkage from the carburetor to the actuating lever of the speed control bracket. See Figure 10-70.

2. Attach the speed control bracket to the mounting locations on the engine with the M6 screws. Position the bracket as marked during disassembly. Torque the screws to 11.0 N·m (95 in. lb.) into new, as-cast holes or 7.5 N·m (65 in. lb.) into used holes. See Figure 10-71.
Install Fuel Pump (If Equipped)
1. Attach the fuel pump mounting bracket to the speed control bracket with the two M5 screws. Torque the screws to 6.5 N·m (55 in. lb.) into new as-cast holes, or 4.0 N·m (35 in. lb.) into used holes. See Figure 10-72.

Figure 10-72. Fuel Pump Mounting Bracket.

2. Attach the fuel pump to the bracket so the pulse fitting is oriented in the four o’clock position. Secure with the two M6 screws. Torque the screws to 9.5 N·m (84 in. lb.) into new, as-cast holes or 5.9 N·m (52 in. lb.) into used holes. Do not over tighten.

3. Connect the pulse and fuel lines to the fuel pump and secure with clamps. See Figure 10-73.

Figure 10-73. Installed Fuel Pump.

Install Rectifier-Regulator
1. Using the two M6 screws, mount the rectifier-regulator onto the crankcase bosses, with the cooling fins out. See Figure 10-74. Torque the screws to 6.0 N·m (55 in. lb.) into new as-cast holes, or 4.0 N·m (35 in. lb.) into used holes.

2. Attach the connector to the rectifier-regulator terminals.

Figure 10-74. Installing Rectifier-Regulator.

Install Blower Housing and Flywheel Screen
1. Position the blower housing on the engine and route the spark plug lead through the underside slot. See Figure 10-75.

Figure 10-75. Installing Blower Housing.

2. Check that the stator leads are within the notch of the blower housing. Align the mounting locations, then install the four M6 shouldered mounting screws. If a flat washer was used under the head on one screw, install the screw in the location closest to oil fill/dipstick. Torque the screws to 11.6 N·m (99 in. lb.) into new, as-cast holes, or 7.7 N·m (68 in. lb.), into used holes. See Figure 10-76.
Section 10
Reassembly

3. Snap the grass screen onto the cooling fan. See Figure 10-77.

Install Oil Sentry™ or Pipe Plug
1. Apply pipe sealant with Teflon® (Loctite® No. 59241 or equivalent), to the threads of the 1/8" pipe plug or adapter. Install and tighten into the port on the closure plate. See Figure 10-78. Torque pipe plug to 4.5-5.0 N·m (40-45 in. lb.). If a switch was installed, apply sealant to the threads of the Oil Sentry™ switch and install into the adapter or center passage. Torque the switch to 4.5-5.0 N·m (40-45 in. lb.). Connect the green wiring harness lead to the terminal on the switch. See Figure 10-79.
Install Air Cleaner Element, Precleaner, and Air Cleaner Cover

1. Install the air cleaner element with the pleated side “out.” Seat the rubber seal onto all the edges of the air cleaner base. See Figure 10-80.

2. Install the precleaner (if so equipped), into the upper section of the air cleaner cover. See Figure 10-81.

3. Install the air cleaner cover and secure with the two retaining knobs. See Figure 10-82.

Install Muffler

1. Install the gasket, muffler, and hex flange nuts on the exhaust port studs. Leave the nuts slightly loose.

2. If an auxiliary muffler bracket is used, install the M6 hex flange screw(s) into the bracket.

3. Torque the hex flange nuts to 24.4 N·m (216 in. lb.). See Figure 10-83. Torque the screws to 7.5 N·m (65 in. lb.).
Section 10
Reassembly

Install Drain Plug, Oil Filter, and Oil
1. Install the oil drain plug and torque to 14 N·m (125 in. lb.).

2. Place a new replacement filter in a shallow pan with the open end up. Pour new oil of the proper type, in through the threaded center hole. Stop pouring when the oil reaches the bottom of the threads. Allow a minute or two for the oil to be absorbed by the filter material.

3. Apply a thin film of clean oil to the rubber gasket on the new filter. Install the new oil filter to the filter adapter or oil cooler. Refer to instructions on the oil filter for proper installation. See Figure 10-84. Fill the crankcase with new oil of the proper type, to the “F” mark on the dipstick.

Prepare the Engine for Operation
The engine is now completely reassembled. Before starting or operating the engine, be sure the following have been done.

1. All hardware is tightened securely.

2. The oil drain plug, Oil Sentry™ pressure switch (if so equipped), and a new oil filter are installed.

3. The crankcase is filled with the correct amount, weight, and type of oil.

Testing the Engine
It is recommended that the engine be operated on a test stand or bench prior to installation in the piece of equipment.

1. Set the engine up on a test stand. Install an oil pressure gauge. Start the engine and check to be certain that oil pressure (5 psi or more) is present.

2. Run the engine for 5-10 minutes between idle and mid-range. Adjust the throttle and choke controls and the high-speed setting as necessary. Make sure the maximum engine speed does not exceed 3300 RPM. Adjust the carburetor idle fuel needle and/or idle speed screw as necessary. Refer to Section 5, Fuel System and Governor.

Figure 10-84. Installing Oil Filter.
Evaporative Emission Compliance System

For the engine to be Tier III compliant, it may be fitted with a Kohler-supplied canister vapor recovery system, or a system developed and installed by the Original Equipment Manufacturer (OEM). Details on the Kohler system are included below.

**Operation:** Fuel vapors travel from the fuel tank through tubing to the carbon canister. On the intake stroke of the engine fuel vapors are drawn in through a port in the carburetor and burned with the fuel charge. See Figure 11-1.

**Maintenance:** On Kohler-supplied canisters, the breather filter can be removed and cleaned with hot soapy water, dried and reinstalled. Do not oil the breather screen. This is done periodically or if system operation is suspect. The carbon canister is sealed and requires no maintenance. See Figure 11-1.

In some applications or installations, the OEM will have installed a different canister or fuel vapor recovery system. See the OEM equipment documentation for service or maintenance information.
Secondary Emission Compliance System

For the engine to be Tier III compliant, it may be fitted with a secondary air induction system (SAI).

Operation: The intake pulse of the engine activates the secondary air valve. Air is drawn through the inlet screen of the secondary air valve. The air is then drawn into the exhaust manifold and muffler where it mixes with any unburned hydrocarbons, which then burn in the heat of the muffler. A hose is connected between a carburetor port and a diaphragm chamber in the secondary air valve. The carburetor vacuum moves the diaphragm to close the valve when air induction is not required. See Figure 11-2.

Maintenance: The air inlet screen in the secondary air valve can be removed, cleaned, and reinstalled. If inspection of the system reveals any damage or decomposition of the hoses, secondary air valve, or exhaust system, the parts should be replaced.
1. Remove the inlet screen from the secondary air valve assembly by grasping the inlet screen at the base and gently pulling away from the valve assembly. See Figure 11-3.

2. Use a soft brush to remove debris from the screen.

3. Run water through the inlet screen in the reverse direction.

4. To reinstall, push the inlet screen onto the barb of the secondary air valve assembly. See Figure 11-3. An audible click will be heard when the inlet screen is properly reinstalled.